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Abstract:

We prove a formula expressing the maximal cut in a graph in terms of solvability of a system
of linear inequalities —e < Az < e (e being the vector of all ones) appended with a nonlinear
constraint ||z||; > 1.2
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!'Equivalent to our “Dr”.
2Above: logo of interval computations and related areas (depiction of the solution set of the system
2, 4]z1 + [-2,1]z2 = [-2,2], [-1,2]z1 + [2,4]z2 = [-2,2] (Barth and Nuding [1])).
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1 Introduction

Maximum cut in a graph is a well known NP-complete problem. In the main result of this
report (Theorem (1)) we prove a formula expressing the maximal cut in a graph in terms of
solvability of a system of linear inequalities

—e< Az <e
(e being the vector of all ones) appended with a nonlinear constraint
z][1 > 1.

In this way the original discrete problem is recast as a continuous weakly nonlinear problem
which can be solved by nonlinear optimization techniques. A related decision problem of
determining whether the maximum cut exceeds a prescribed nonnegative integer ¢ is handled
in Corollary [3.

2 Maximum cut: definition

Let G = (N, E) be an undirected graph with set of nodes N = {1,...,n} and set of edges E.
Let m denote the cardinality of F.

Let Ag = (ai;) be given by a;; = n if i = j, a;;j = —1 if i # j and the nodes 4, j are
connected by an edge, and a;; = 0 if ¢ # j and ¢,j are not connected. Then Ag is an
M C-matrix [4].

For S C N, define the cut ¢(S) as the number of edges in E whose one endpoint belongs
to S and the other one to N \ S. Then the maximum cut in G is defined by

mc(G) = max c(9).

Computation of the maximum cut in a graph is known to be an NP-complete problem [2].

3 Maximum cut: characterization

We denote N/ = {0,1,2,...} (the set of nonnegative integers), e = (1,1,...,1)T € R?, and
we use the norm ||z||; = eT|z| = Y., |#;|. Then we have this characterization which is the
main result of this report.

Theorem 1. For each undirected graph G there holds
mc(G) = max{£ € N' | —e < (40 — 2m +n?)Ag'z <e, ||z|j; > 1 has a solution }.
Proof. The result follows from the relation

mc(G) = 1 (ze?i%}i}" zTAGz + 2m — n2)

|

established in the proof of Theorem 3 in [4] and from Proposition 3 in [3]. 0

It remains to be shown how a maximum cut ¢(.S) can be found.



Theorem 2. Let x be any solution of the system

— e < (4me(G) — 2m + n?)Ag'w < e,

][y > 1.
Then the set
satisfies
c(S) = me(G).

Proof. This description is a consequence of construction made in the proof of Theorem 3
in [4]. O

4 Maximum cut: lower bounds

As immediate consequences of Theorems [1l and 2| we obtain these two corollaries.

Corollary 3. Let G be an undirected graph and ¢ a nonnegative integer. Then

mc(G) >/ (4.1)

holds if and only if the system
—e< (4 -2m+nH)A e <e, (4.2)
[zl > 1 (4.3)

has a solution.

Corollary 4. If the system (4.2), (4.5), where £ is a nonnegative integer, has a solution x,
then the set

S={i|z; >0}
satisfies
c(S) > 4.
If (4.2), (4.5) has no solution, then
mc(G) < L.

5 Maximum cut: algorithm

Corollary 3 shows us a way how to verify (or disprove) the inequality (4.1) via solving a
system of inequalities of the type
—e<Ax <e, (5.1)

[z]1 > 1. (5.2)

Such an algorithm, named basintnpprob [from BASic INTerval NP PROBlem]|, was de-
scribed in [5]. As proved there, the algorithm in a finite number of steps either finds a
solution to (5.1)), (5.2), or states that no such solution exists.
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