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Abstract:

We present the theoretical background of the VERSOFT’s file zd.m for verification of linear
dependence/independence of columns of a matrix by means of finite precision arithmetic.1
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1Above: logo of interval computations and related areas (depiction of the solution set of the system
[2, 4]x1 + [−2, 1]x2 = [−2, 2], [−1, 2]x1 + [2, 4]x2 = [−2, 2] (Barth and Nuding [1])).
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1 Introduction

In this report we are concerned with the problem of verification of linear (in)dependence of
columns of a matrix by means of finite precision arithmetic. That means, given a matrix
A ∈ Fm×n, where F is the set of floating-point numbers on a given computer, we wish to end
up with statement

A has linearly independent columns
or

A has linearly dependent columns
and these assertions should hold as mathematical truths despite having been obtained by
computation in finite precision arithmetic. The third possible statement is then

no verified result
meaning that the obtained result could not be verified in the above sense.

While verification of linear independence poses no problem (Theorem 2), verification of
linear dependence is by no means easy. The clue to the solution of this problem consists in
the use of a verified pseudoinverse which, in turn, requires use of a verified singular value
decomposition. In the nutshell, the problem can be solved by finite precision means, but at
the expense of employing heavy machinery.

In Section 2 we start with characterization of linear independence of columns by means
of the pseudoinverse matrix. This result is then employed in sufficient conditions for verified
linear independence (Theorem 2) and dependence (Theorem 3). In Theorem 4 we show how
to find, in case of dependence, a verified enclosure of a null vector x 6= 0 satisfying Ax = 0,
and in Theorem 5 we bring a verified description of the whole of the null space N (A). The
last Theorem 6 shows how to find a linearly dependent column which can be deleted while
preserving the range space R(A) intact.

2 Pseudoinverse

As is well known [3], for each matrix A ∈ Rm×n there exists exactly one matrix A† ∈ Rn×m

satisfying

AA†A = A, (2.1)
A†AA† = A†, (2.2)
(A†A)T = A†A, (2.3)
(AA†)T = AA†. (2.4)

This matrix is called the pseudoinverse (or Moore-Penrose inverse) of A. If A has linearly
independent columns, then A† is given explicitly by2

A† = (AT A)−1AT . (2.5)

An n×m interval matrix B = [B, B] = {B | B 6 B 6 B } is said to be an enclosure of A†

if A† ∈ B holds, and a verified enclosure of A† if B, B ∈ Fn×m and A† ∈ B holds true.

2As it can be easily proved by verifying (2.1)-(2.4).
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3 Auxiliary result

I suppose that the following theorem is known; but since I have not found it in standard
textbooks, I provide its proof here.

Theorem 1. A matrix A ∈ Rm×n has linearly independent columns if and only if

A†A = I. (3.1)

Proof. If A has linearly independent columns, then (2.5) gives A†A = I. Conversely,
if (3.1) holds, then Ax = 0 implies x = A†Ax = 0, hence the columns of A are linearly
independent. 2

4 Verification of linear independence

Verification of linear independence is the easier of the two tasks. It is based on the following
theorem.

Theorem 2. Let for a given A ∈ Rm×n there exist a matrix R ∈ Rn×m such that

‖I −RA‖ < 1 (4.1)

holds in some consistent matrix norm3. Then A has linearly independent columns.

Proof. We have
RA = I − (I −RA)

and since ‖I−RA‖ < 1, the matrix RA ∈ Rn×n is nonsingular ([2], Corollary 5.6.16). Hence
if Ax = 0, then RAx = 0 and nonsingularity of RA implies x = 0 which shows that the
columns of A are linearly independent. 2

The choice of R in (4.1) is self-explanatory. Since I−A†A = 0 in case of linear independence
(Theorem 1), we choose

R=pinv(A)

(the computed pseudoinverse of A). But in order that the result (linear independence) be
verified we must have the inequality (4.1) verified. In the INTLAB file zd.m on pp. 6-7 this
is done in the following part:

I=eye(n,n);
R=pinv(A);
R=infsup(R,R);
G=I-R*A; % intval quantity
n1=norm(G,1);
ni=norm(G,’inf’);

3I.e., satisfying ‖CD‖ 6 ‖C‖ · ‖D‖ for each C, D ∈ Rn×n.
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if min(n1.sup,ni.sup)<1 % full column rank of A verified
fcr=1; % verified full column rank
setround(gr); return

end

Since R is made a matrix of type intval by R=infsup(R,R), the following quantities G,
n1, ni are also of type intval4, hence if min(n1.sup,ni.sup)<1, then either n1.sup<1 or
ni.sup<1 so that the inclusion isotony of interval arithmetic operations implies that either
‖I − RA‖1 < 1 or ‖I − RA‖∞ < 1 is verified, hence the columns of A are verified linearly
independent in view of Theorem 2. In this case the variable fcr (Full Column Rank) is set
to 1.

5 Verification of linear dependence

At this point I must confess that during construction of VERSOFT [5], which lasted several
years, I was looking for a long time in vain for a tool which would enable us to deliver a
verified confirmation of linear dependence. The result below is the single one I found (and I
do not know another one till today).

Theorem 3. Let A ∈ Rm×n and let B be a verified enclosure of A† such that the interval
matrix

C = I −BA = [C, C]

satisfies Cij > 0 or Cij < 0 for some i, j. Then A has linearly dependent columns.

Proof. Assume to the contrary that the columns of A are linearly independent. Since the
(not exactly known) matrix A† belongs to B, we have, according to Theorem 1,

0 = I −A†A ∈ I −BA = C = [C,C],

hence
C 6 0 6 C

which contradicts the fact that Cij > 0 or Cij < 0 for some i, j. 2

Thus, to verify linear dependence of the columns of A by means of Theorem 3, we must
perform three steps: first, to find a verified enclosure B of A†; second, to compute C = I−BA
in interval arithmetic; and third, to check whether Cij > 0 or Cij < 0 holds for some i, j.
Of these three, the last two steps are trivial; so the most important part consists in finding
a verified enclosure of A†. This is done by VERSOFT’s program verpinv.m [4] whose
syntax is [X,E]=verpinv(A). Here X is a verified enclosure of A and E is an error message
(if applicable).

In the zd.m file on pp. 6-7 this part looks a follows; our interval matrices B, C are denoted
there by X, B, respectively, and the variable fcr is set to 0 if linear dependence is verified.

4Following the “basic interval arithmetic property”: an operation always uses interval arithmetic if at least
one of the operands is of type intval.
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[X,Everpinv]=verpinv(A);
if isnan(X.inf(1,1))

E=Everpinv; % no verified result
setround(gr); return

end
% pseudoinverse computed
B=I-X*A; % B=I-pinv(A)*A % A is column rank deficient iff B is nonzero
if any(any(B.inf>0))||any(any(B.sup<0)) % B is verified nonzero

fcr=0; % verified column rank defective
end

6 Null space

If A has linearly dependent columns, then Ax = 0 for some x 6= 0. Such an x cannot be
expressed exactly in floating point in general, but a verified enclosure of it can be found.

Theorem 4. Under assumptions and notation of Theorem 3 the interval vector

x = C•j

is verified to enclose a point vector x satisfying Ax = 0 and xi 6= 0.

Proof. Define x = (I − A†A)•j = (I − A†A)ej . Then x ∈ (I − BA)•j = C•j = x,
Ax = (A−AA†A)ej = 0 by (2.1), and xi 6= 0 because xi ∈ [Cij , Cij ] and 0 /∈ [Cij , Cij ]. 2

This result was not included into the zd.m file as it had not been known to the author at
the time.

We can even give a certain description of the whole null space

N (A) = {x | Ax = 0 }.
Theorem 5. Under assumptions and notation of Theorem 3 there exists a point matrix

C ∈ C such that
N (A) = {Cy | y ∈ Rn }.

Proof. By Greville’s description, N (A) = { (I − A†A)y | y ∈ Rn }. Here for C = I − A†A
we have C ∈ I −BA = C, and we are done. 2

7 Range space

Here we consider the range space of A,

R(A) = {Ax | x ∈ Rn }.
Theorem 6. Under assumptions and notation of Theorem 3, let Ã denote the m× (n−1)

matrix formed from A by deleting its ith column. Then

R(Ã) = R(A).
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Proof. According to Theorem 4 there exists an x satisfying Ax = 0 and xi 6= 0. Hence
from

Ax =
n∑

j=1

xjA•j = 0

we have

A•i = −(
i−1∑

j=1

xjA•j +
n∑

j=i+1

xjA•j)/xi, (7.1)

so that the columns of Ã span R(A). 2

By repeating this process, we can construct a verified basis of R(A).
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8 The file zd.m

function [fcr,E]=zd(A)
% ZD Verified full column rank of a rectangular real matrix.
%
% This is an INTLAB file. It requires to have INTLAB installed under
% MATLAB to function properly.
%
% For a rectangular real matrix A,
% fcr=zd(A)
% either verifies full column rank of A, or verifies column rank
% deficiency of A, or fails (yields no verified result):
%
% fcr= 1 A is verified to have full column rank (i.e.,
% columns of A are linearly independent),
% fcr= 0 A is verified not to have full column rank (i.e.,
% columns of A are linearly dependent),
% fcr=-1 no verified result.
%
% For full row rank, apply ZD to A’.
%
% See also PINV, VERPINV.

% Copyright 2008 Jiri Rohn.
%
% Full column rank is verified by showing that
% norm(eye(size(A,2))-pinv(A)*A,p)<1
% for p=1 or p=’inf’. Column rank deficiency is proved by showing that
% the matrix
% B=eye(size(A,2))-pinv(A)*A
% is verified to be nonzero.
%
% WARRANTY
%
% Because the program is licensed free of charge, there is
% no warranty for the program, to the extent permitted by applicable
% law. Except when otherwise stated in writing the copyright holder
% and/or other parties provide the program "as is" without warranty
% of any kind, either expressed or implied, including, but not
% limited to, the implied warranties of merchantability and fitness
% for a particular purpose. The entire risk as to the quality and
% performance of the program is with you. Should the program prove
% defective, you assume the cost of all necessary servicing, repair
% or correction.
%
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% History
%
% 2007-11-02 first version
% 2008-03-12 version for posting
% 2008-04-05 column rank deficiency part added; E added
% 2008-05-30 renamed as ZD, p-coded, called by VERFULLCOLRANK
%
gr=getround;
setround(0);
[m,n]=size(A);
fcr=-1;
E.error=’verfullcolrank: none’;
E.where=’NaN’;
E.value=’NaN’;
if ~(nargin==1&&nargout<=2&&~isintval(A))

E.error=’verfullcolrank: wrong data’;
setround(gr); return

end
I=eye(n,n);
R=pinv(A);
R=infsup(R,R);
G=I-R*A; % intval quantity
n1=norm(G,1);
ni=norm(G,’inf’);
if min(n1.sup,ni.sup)<1 % full column rank of A verified

fcr=1; % verified full column rank
setround(gr); return

end
[X,Everpinv]=verpinv(A);
if isnan(X.inf(1,1))

E=Everpinv; % no verified result
setround(gr); return

end
% pseudoinverse computed
B=I-X*A; % B=I-pinv(A)*A % A is column rank deficient iff B is nonzero
if any(any(B.inf>0))||any(any(B.sup<0)) % B is verified nonzero

fcr=0; % verified column rank defective
end
setround(gr);

9 Dedication

Dedicated to Z. D.
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