National Repository of Grey Literature 38 records found  1 - 10nextend  jump to record: Search took 0.00 seconds. 
Design of Electromagnetic Positioning Platform for Testing of Nonlinear Control and Identification Algorithms
Rajchl, Matej ; Takács, Gergely (referee) ; Brablc, Martin (advisor)
Táto diplomová práca sa zaoberá návrhom a konštrukciou elektromagnetickej, polohovacej platformy, pre testovanie nelineárnych riadiacich a identifikačných algoritmov. Platforma je založená na tvarovaní magnetického poľa v každom bode pomocou troch elektromagnetov a polohuje oceľovú guličku po dotykovom paneli ktorý sníma polohu tejto guličky. Platforma má slúžiť hlavne pre demonštráciu rôznych nelineárnych riadiacich algoritmov vo výukovom prostredí. Tri príklady takýchto algoritmov sú ukázané a overené v rámci tejto diplomovej práce.
Návrh a realizace laboratorního modelu "Inverzní kyvadlo řízené setrvačníkem"
Novotný, Jan ; Křivánek, Václav (referee) ; Grepl, Robert (advisor)
This thesis deals with the design of a lecture model of an inverse pendulum controled by a flywheel, which is a system of an unstable beam with an electromotor and a reaction wheel at its end. The moment of motor acting on the flywheel also causes a moment acting on the beam, which is the way the system is controled. The device works connected to a personal computer.
Localization Of Gamma Radiation Sources
Lazna, Tomas
The paper describes a method for acquiring and processing data concerned with a radiation situation in a pre-defined region of interest with a goal of localizing point sources present in the region. The acquisition underlies the robotic platform Orpheus-X4 equipped with a precise navigation module and gamma radiation detectors, a path planning involves Boustrophedon decomposition. The processing is based on the Gauss-Newton method, a contribution of the paper consists in a way to provide the method correct input data. Introduced algorithms were verified experimentally. Although not all sources can be found using the chosen equipment, in case of successful localization the accuracy is not worse than 0.1 m.
Light Airplane Flight Parameters Estimation
Dittrich, Petr ; Pačes, Pavel (referee) ; Fiľakovský, Karol (referee) ; Chudý, Peter (advisor)
Tato práce je zaměřena na odhad letových parametrů malého letounu, konkrétně letounu Evektor SportStar RTC. Pro odhad letových parametrů jsou použity metody "Equation Error Method", "Output Error Method" a metody rekurzivních nejmenších čtverců. Práce je zaměřena na zkoumání charakteristik aerodynamických parametrů podélného pohybu a ověření, zda takto odhadnuté letové parametry odpovídají naměřeným datům a tudíž vytvářejí předpoklad pro realizaci dostatečně přesného modelu letadla. Odhadnuté letové parametry jsou dále porovnávány s a-priorními hodnotami získanými s využitím programů Tornado, AVL a softwarovéverze sbírky Datcom. Rozdíly mezi a-priorními hodnotami a odhadnutými letovými paramatery jsou porovnány s korekcemi publikovanými pro subsonické letové podmínky modelu letounu F-18 Hornet.
Segway driver parameter estimation and its use for optimizing the control algorithm
Dobossy, Barnabás ; Zouhar, František (referee) ; Brablc, Martin (advisor)
Táto práca sa zaoberá vývojom, testovaním a implementáciou adaptívneho riadiaceho systému pre dvojkolesové samobalancujúce vozidlo. Adaptácia parametrov vozidla sa uskutoční na základe parametrov vodiča. Parametre sústavy sa nemerajú priamo, ale sú odhadované na základe priebehu stavových premenných a odozvy sústavy. Medzi odhadované parametre patrí hmotnosť a poloha ťažiska vodiča. Cieľom práce je zabezpečiť adaptáciu jazdných vlastností vozidla k rôznym vodičom s rôznou hmotnosťou, kvôli zlepšeniu stability vozidla. Táto práca je pokračovaním predchádzajúcich projektov z roku 2011 a 2015.
Stochastic Differential Equations with Gaussian Noise
Janák, Josef ; Maslowski, Bohdan (advisor)
Title: Stochastic Differential Equations with Gaussian Noise Author: Josef Janák Department: Department of Probability and Mathematical Statistics Supervisor: Prof. RNDr. Bohdan Maslowski, DrSc., Department of Probability and Mathematical Statistics Abstract: Stochastic partial differential equations of second order with two un- known parameters are studied. The strongly continuous semigroup (S(t), t ≥ 0) for the hyperbolic system driven by Brownian motion is found as well as the formula for the covariance operator of the invariant measure Q (a,b) ∞ . Based on ergodicity, two suitable families of minimum contrast estimators are introduced and their strong consistency and asymptotic normality are proved. Moreover, another concept of estimation using "observation window" is studied, which leads to more families of strongly consistent estimators. Their properties and special cases are descibed as well as their asymptotic normality. The results are applied to the stochastic wave equation perturbed by Brownian noise and illustrated by several numerical simula- tions. Keywords: Stochastic hyperbolic equation, Ornstein-Uhlenbeck process, invariant measure, paramater estimation, strong consistency, asymptotic normality.
Stochastic Differential Equations with Gaussian Noise
Janák, Josef ; Maslowski, Bohdan (advisor) ; Duncan, Tyrone E. (referee) ; Pawlas, Zbyněk (referee)
Title: Stochastic Differential Equations with Gaussian Noise Author: Josef Janák Department: Department of Probability and Mathematical Statistics Supervisor: Prof. RNDr. Bohdan Maslowski, DrSc., Department of Probability and Mathematical Statistics Abstract: Stochastic partial differential equations of second order with two un- known parameters are studied. The strongly continuous semigroup (S(t), t ≥ 0) for the hyperbolic system driven by Brownian motion is found as well as the formula for the covariance operator of the invariant measure Q (a,b) ∞ . Based on ergodicity, two suitable families of minimum contrast estimators are introduced and their strong consistency and asymptotic normality are proved. Moreover, another concept of estimation using "observation window" is studied, which leads to more families of strongly consistent estimators. Their properties and special cases are descibed as well as their asymptotic normality. The results are applied to the stochastic wave equation perturbed by Brownian noise and illustrated by several numerical simula- tions. Keywords: Stochastic hyperbolic equation, Ornstein-Uhlenbeck process, invariant measure, paramater estimation, strong consistency, asymptotic normality.
Parameter estimation of gamma distribution
Zahrádková, Petra ; Kulich, Michal (advisor) ; Hlávka, Zdeněk (referee)
It is well-known that maximum likelihood (ML) estimators of the two parame- ters in a Gamma distribution do not have closed forms. The Gamma distribution is a special case of a generalized Gamma distribution. Two of the three likeli- hood equations of the generalized Gamma distribution can be used as estimating equations for the Gamma distribution, based on which simple closed-form estima- tors for the two Gamma parameters are available. Intuitively, performance of the new estimators based on likelihood equations should be close to the ML estima- tors. The study consolidates this conjecture by establishing the asymptotic beha- viours of the new estimators. In addition, the closed-forms enable bias-corrections to these estimators. 1
Neural Model of Transmission Channel in 60 Ghz ISM Band
Kotol, Martin
In this paper, methodology of estimating parameters of a wireless transmission channel inside a car is presented. The work is focused on the utilization of artificial neural networks for channel modelling in the frequency range from 55 GHz to 65 GHz. Promising results have been reached by a feed-forward neural network and a radial basis function neural network. In order to train the networks, a wireless transmission was carefully measured in a testing car. Measured data were properly processed to be used both for training neural networks and validating neural models.

National Repository of Grey Literature : 38 records found   1 - 10nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.