Národní úložiště šedé literatury Nalezeno 6 záznamů.  Hledání trvalo 0.00 vteřin. 
Accelerated Sparse Matrix Operations in Nonlinear Least Squares Solvers
Polok, Lukáš ; Hartley, Richard (oponent) ; Sojka, Eduard (oponent) ; Smrž, Pavel (vedoucí práce)
This thesis focuses on data structures for sparse block matrices and the associated algorithms for performing linear algebra operations that I have developed. Sparse block matrices occur naturally in many key problems, such as Nonlinear Least Squares (NLS) on graphical models. NLS are used by e.g. Simultaneous Localization and Mapping (SLAM) in robotics, Bundle Adjustment (BA) or Structure from Motion (SfM) in computer vision. Sparse block matrices also occur when solving Finite Element Methods (FEMs) or Partial Differential Equations (PDEs) in physics simulations.  The majority of the existing state of the art sparse linear algebra implementations use elementwise sparse matrices and only a small fraction of them support sparse block matrices. This is perhaps due to the complexity of sparse block formats which reduces computational efficiency, unless the blocks are very large. Some of the more specialized solvers in robotics and computer vision use sparse block matrices internally to reduce sparse matrix assembly costs, but finally end up converting such representation to an elementwise sparse matrix for the linear solver. Most of the existing sparse block matrix implementations focus only on a single operation, such as the matrix-vector product. The solution proposed in this thesis covers a broad range of functions: it includes efficient sparse block matrix assembly, matrix-vector and matrix-matrix products as well as triangular solving and Cholesky factorization. These operations can be used to construct both direct and iterative solvers as well as to compute eigenvalues. Highly efficient algorithms for both Central Processing Units (CPUs) and Graphics Processing Units (GPUs) are provided. The proposed solution is integrated in SLAM++ , a nonlinear least squares solver focused on robotics and computer vision. It is evaluated on standard datasets where it proves to significantly outperform other similar state of the art implementations, without sacrificing generality or accuracy in any way.
Hybrid Methods for Nonlinear Least Squares Problems
Lukšan, Ladislav ; Matonoha, Ctirad ; Vlček, Jan
This contribution contains a description and analysis of effective methods for minimization of the nonlinear least squares function F(x) = (1=2)fT (x)f(x), where x ∈ Rn and f ∈ Rm, together with extensive computational tests and comparisons of the introduced methods. All hybrid methods are described in detail and their global convergence is proved in a unified way. Some proofs concerning trust region methods, which are difficult to find in the literature, are also added. In particular, the report contains an analysis of a new simple hybrid method with Jacobian corrections (Section 8) and an investigation of the simple hybrid method for sparse least squares problems proposed previously in [33] (Section 14).
Plný text: Stáhnout plný textPDF
A Hybrid Method for Nonlinear Least Squares that Uses Quasi-Newton Updates Applied to an Approximation of the Jacobian Matrix
Lukšan, Ladislav ; Vlček, Jan
In this contribution, we propose a new hybrid method for minimization of nonlinear least squares. This method is based on quasi-Newton updates, applied to an approximation A of the Jacobian matrix J, such that AT f = JT f. This property allows us to solve a linear least squares problem, minimizing ∥Ad+f∥ instead of solving the normal equation ATAd+JT f = 0, where d ∈ Rn is the required direction vector. Computational experiments confirm the efficiency of the new method.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.