National Repository of Grey Literature 15 records found  1 - 10next  jump to record: Search took 0.01 seconds. 
The role of energy metabolism in cardioprotection induced by the adaptation to chronic hypoxia
Kolář, David
Cardiac energy metabolism is the one of the most complex system in the body. To sustain life, but also to respond quickly to any sudden changes (e.g. running, emotional stress), the heart has developed a unique ability and has become a metabolic "omnivore". At physiological conditions, long chain fatty acids (LCFAs) present the major energetic source for the adult myocardium. However, the cardiac energy metabolism may be compromised during pathophysiological states. One of the most dangerous is, undoubtedly, ischaemia-reperfusion injury with its acute form, myocardial infarction. However, the adaptation to chronic hypoxia has been known for decades for its cardioprotective effect against I/R. Changes of cardiac energy metabolism induced by the adaptation have not been fully explored and the system conceals still too many secrets. This thesis has aimed to determine how adaptation to chronic hypoxia affects the cardiac metabolism of the rat LVs in the following set-ups: 1. The effect of chronic normobaric hypoxia (CNH; 3 weeks, 5500m) during a brief I/R protocol in vitro on the protein kinase B/hexokinase (Akt/HK) pathway, including the expression and phosphorylation of Akt, the expression and localization of HK, the expression of mitochondrial creatine kinase (mtCKS), and the level of Bcl-2 family...
Role of phospholipases A2 in the mechanism of cardioprotection induced by adaptation to chronic hypoxia
Míčová, Petra
Cardiovascular diseases, particularly acute myocardial infarction, are the leading causes of death in developed countries including the Czech Republic. One of the ways to increase cardiac resistance against acute ischemia/reperfusion (I/R) injury is adaptation to chronic hypoxia. However, changes at the molecular level associated with this adaptation have still not been fully explored. It is obvious that the myocardial function depends on maintaining membrane integrity and cellular homeostasis of cardiomyocytes. From this perspective, phospholipases A2 (PLA2) are the key enzymes that take part in the remodeling and repairing of the cell membranes. Moreover, PLA2 are also involved in generation of lipid signaling molecules - free long chain fatty acids (FA) and 2-lysophopholipids. In myocardium, members of three major PLA2 classes are present: cytosolic PLA2 (cPLA2), calcium-independent PLA2 (iPLA2) and secretoric PLA2 (sPLA2). This thesis aimed to determine the following in the left ventricular myocardium of adult male Wistar rats: 1) The effect of intermittent hypobaric hypoxia (IHH; 8 hours/day, 5 days/week, 5 weeks, ~ 7000 m) on the expression of total cPLA2α and its phosphorylated form (p-cPLA2α, Ser505 ), and further iPLA2 and sPLA2IIA, as well as signaling proteins activating cPLA2α enzyme...
The role of energy metabolism in cardioprotection induced by the adaptation to chronic hypoxia
Kolář, David ; Žurmanová, Jitka (advisor) ; Adamcová, Michaela (referee) ; Bardová, Kristina (referee)
Cardiac energy metabolism is the one of the most complex system in the body. To sustain life, but also to respond quickly to any sudden changes (e.g. running, emotional stress), the heart has developed a unique ability and has become a metabolic "omnivore". At physiological conditions, long chain fatty acids (LCFAs) present the major energetic source for the adult myocardium. However, the cardiac energy metabolism may be compromised during pathophysiological states. One of the most dangerous is, undoubtedly, ischaemia-reperfusion injury with its acute form, myocardial infarction. However, the adaptation to chronic hypoxia has been known for decades for its cardioprotective effect against I/R. Changes of cardiac energy metabolism induced by the adaptation have not been fully explored and the system conceals still too many secrets. This thesis has aimed to determine how adaptation to chronic hypoxia affects the cardiac metabolism of the rat LVs in the following set-ups: 1. The effect of chronic normobaric hypoxia (CNH; 3 weeks, 5500m) during a brief I/R protocol in vitro on the protein kinase B/hexokinase (Akt/HK) pathway, including the expression and phosphorylation of Akt, the expression and localization of HK, the expression of mitochondrial creatine kinase (mtCKS), and the level of Bcl-2 family...
Role of protein kinase C isoforms in cardioprotective mechanism of chronic hypoxia
Hlaváčková, Markéta
Cardiovascular diseases, particularly acute myocardial infarction, are one of the leading causes of death in developed countries. It is well known that adaptation to chronic intermittent hypobaric hypoxia (IHH) confers long-lasting cardiac protection against acute ischemia/reperfusion injury. Protein kinase C (PKC) appears to play a role in its cardioprotective mechanism since the administration of general PKC inhibitor completely abolished the improvement of ischemic tolerance in IHH hearts. However, the involvement of individual PKC isoforms remains unclear. Therefore, the primary aim of this study was to investigate the potential involvement of PKCδ and PKCε, the most prevalent PKC isoforms in rat heart, in the mechanism of IHH-induced cardioprotection. We showed that IHH up- regulated PKC protein in left ventricle, enhanced its phosphorylation on Ser643 and increased its co-localization with markers of mitochondrial and sarcolemmal membranes. PKCδ subcellular redistribution induced by IHH as well as the infarct size-limiting effect of IHH was reversed by acute treatment with PKCδ inhibitor rottlerin. These data support the view that PKCδ plays a significant role in IHH-induced cardioprotection. On the other hand, adaptation to IHH decreased the PKC total protein level without affecting its...
Role of phospholipases A2 in the mechanism of cardioprotection induced by adaptation to chronic hypoxia
Míčová, Petra ; Novotný, Jiří (advisor) ; Kuda, Ondřej (referee) ; Kazdová, Ludmila (referee)
Cardiovascular diseases, particularly acute myocardial infarction, are the leading causes of death in developed countries including the Czech Republic. One of the ways to increase cardiac resistance against acute ischemia/reperfusion (I/R) injury is adaptation to chronic hypoxia. However, changes at the molecular level associated with this adaptation have still not been fully explored. It is obvious that the myocardial function depends on maintaining membrane integrity and cellular homeostasis of cardiomyocytes. From this perspective, phospholipases A2 (PLA2) are the key enzymes that take part in the remodeling and repairing of the cell membranes. Moreover, PLA2 are also involved in generation of lipid signaling molecules - free long chain fatty acids (FA) and 2-lysophopholipids. In myocardium, members of three major PLA2 classes are present: cytosolic PLA2 (cPLA2), calcium-independent PLA2 (iPLA2) and secretoric PLA2 (sPLA2). This thesis aimed to determine the following in the left ventricular myocardium of adult male Wistar rats: 1) The effect of intermittent hypobaric hypoxia (IHH; 8 hours/day, 5 days/week, 5 weeks, ~ 7000 m) on the expression of total cPLA2α and its phosphorylated form (p-cPLA2α, Ser505 ), and further iPLA2 and sPLA2IIA, as well as signaling proteins activating cPLA2α enzyme...
Cardiac ischemic tolerance in rats subjected to adaptation to chronic hypoxia and physical exercise: the role of TNF-alpha.
Svatoňová, Anna ; Neckář, Jan (advisor) ; Maxová, Hana (referee) ; Szárszoi, Ondrej (referee)
Cardiovascular diseases represent the most important health risk factors because they are responsible for more than 50% of total mortality. Among them, the ischemic heart disease is leading cause of mortality. From the whole spectrum of different cardioprotective phenomena we have selected: 1) adaptation to chronic normobaric hypoxia (CNH) as the traditional experimental model in our laboratory area and 2) protective effect of exercise which in recent years represents promising and clinically relevant protective mechanism. The whole thesis is based on two studies. Aim of the first study was to characterize the expression of the main pro-inflammatory cytokine, TNF-α, in hearts of rats adapted to CNH. Chronic TNF-α inhibition by infliximab was used for discovering of certain role of TNF-α in CNH. We showed that increased myocardial level of TNF-α during adaptation to CNH was contributed via its receptor TNFR2 and nuclear factor κB-dependent activation of protective redox signalling with increased antioxidant defence. This adaptive pathway participates on the infarct size-limiting effect of CNH. Aim of the second study was find out whether exercise training and CNH could play synergy in cardiac protection in rats model. We reported that CNH and exercise reduced infarct size but their combination...
The role of protein kinase C and its targets in cardioprotection
Holzerová, Kristýna ; Hlaváčková, Markéta (advisor) ; Alán, Lukáš (referee) ; Vízek, Martin (referee)
The mortality of cardiovascular diseases remains high and it likely tends to increase in the future. Although many ways how to increase the resistance against myocardial ischemia- reperfusion damage have been described, few of them were transferred into clinical practice. Cardioprotective effect of chronic hypoxia has been described during 60s of the last century. Its detailed mechanism has not been elucidated, but a number of components has been identified. One of these components presents protein kinase C (PKC). The role of PKC was described in detail in the mechanism of ischemic preconditioning, but its involvement in the mechanism of cardioprotection induced by chronic hypoxia remains unclear. One reason is the amount of PKC isoforms, which have often contradictory effects, and the diversity of hypoxic models used. The most frequently mentioned isoforms in connection with cardioprotection are PKCδ and PKCε. The aim of my thesis was to analyze changes in these PKC isoforms at two different cardioprotective models of hypoxia - intermittent hypobaric (IHH) and continuous normobaric hypoxia (CNH). We also examined the target proteins of PKCδ and PKCε after the adaptation to IHH, which could be involved in the mechanism of cardioprotection. These included proteins associated with apoptosis and...
Cardiac ischemic tolerance in rats subjected to adaptation to chronic hypoxia and physical exercise: the role of TNF-alpha.
Svatoňová, Anna
Cardiovascular diseases represent the most important health risk factors because they are responsible for more than 50% of total mortality. Among them, the ischemic heart disease is leading cause of mortality. From the whole spectrum of different cardioprotective phenomena we have selected: 1) adaptation to chronic normobaric hypoxia (CNH) as the traditional experimental model in our laboratory area and 2) protective effect of exercise which in recent years represents promising and clinically relevant protective mechanism. The whole thesis is based on two studies. Aim of the first study was to characterize the expression of the main pro-inflammatory cytokine, TNF-α, in hearts of rats adapted to CNH. Chronic TNF-α inhibition by infliximab was used for discovering of certain role of TNF-α in CNH. We showed that increased myocardial level of TNF-α during adaptation to CNH was contributed via its receptor TNFR2 and nuclear factor κB-dependent activation of protective redox signalling with increased antioxidant defence. This adaptive pathway participates on the infarct size-limiting effect of CNH. Aim of the second study was find out whether exercise training and CNH could play synergy in cardiac protection in rats model. We reported that CNH and exercise reduced infarct size but their combination...
Adenosine receptors and transporters in rat myocardium: the effect of adaptation to chronic hypoxia
Neumannová, Kateřina ; Novotný, Jiří (advisor) ; Hlaváčková, Markéta (referee)
2. Abstract Adaptation to chronic hypoxia is in addition to ischemic preconditioning one of the two known cardioprotective mechanisms. The precise molecular basis of these processes is still not fully explained. There are some studies that suggest the possible involvement of the adenosinergic signaling system in this adaptation. In this work, we focused on the characterization of the adenosinergic system in the myocardium of rats adapted to two regimens of chronic hypoxia - a protective continuous normobaric hypoxia (CNH) and non-protective intermittent hypoxia (INH/R, 23 h hypoxia and 1 h normoxia). Initially, we compared the total amount of adenosine receptors in samples from different groups of adapted animals. We discovered changes mainly at A2B receptor, which increased at CNH and declined in INH/R. This result suggests the possible involvement of A2B receptors in cardioprotection afforded by adaptation to chronic hypoxia. Furthermore, we investigated the distribution of various types of adenosine receptors and transporters in the plasma membrane of cardiac cells. We observed that A2A and A3 localize in membrane microdomains together with membrane enzyme CD73 that produces adenosine in the extracellular space by degrading AMP. A1 and A2B receptors similarly as nucleoside transporters ENT1, ENT2 and...
Effect of chronic hypoxia on antioxidative capacity of rat myocardium.
Závišková, Kristýna ; Nováková, Olga (advisor) ; Žurmanová, Jitka (referee)
Adaptation to chronic hypoxia activates endogenous signaling cascades, which lead to cardiac protection against acute ischemia/reperfusion (I/R) injury. The molecular mechanism of this phenomenon has not been fully clarified yet. However, it was proved that reactive oxygen species (ROS) take part in cardioprotective signaling pathway inducted by chronic hypoxia. The high level of ROS must be precisely regulated by antioxidative system of a cell. The aim of diploma thesis was to examine the effect of intermittent hypobaric hypoxia (IHH, 7 000 m) on relative amount of antioxidative enzymes (peroxiredoxin 6 - PRX6, thioredoxin 1 and 2 - TRX1 and TRX2, thioredoxin reductase 1 - TRXR1) and also enzymes of iron metabolism (heme oxygenase 1 and 2 - HO1 and HO2, aconitase 1 and 2 - ACO1 and ACO2), which participate in regulation of cell redox state. Moreover, we studied the effect of adaptation to IHH and an antioxidant tempol on relative amount of calcium-independent phospholipase A2 (iPLA2). iPLA2 can remove peroxidized fatty acids from membrane phospholipids. On the other hand, iPLA2 can damage cell in I/R conditions. All enzymes were studied in homogenates from normoxic and IHH adapted rat left ventricular myocardium by Western blot. Adaptation to IHH caused a decrease of PRX6 and on the opposite an increase of...

National Repository of Grey Literature : 15 records found   1 - 10next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.