Národní úložiště šedé literatury Nalezeno 5 záznamů.  Hledání trvalo 0.00 vteřin. 
Template assisted electrodeposition of multilayer nanostructures
Lednický, Tomáš ; Drbohlavová, Jana (oponent) ; Čechal, Jan (vedoucí práce)
This diploma thesis is focused on the fabrication of Au-PANI-Au nanowires. The fabrication of nanowires based on the electrochemical deposition of various metal and polymerization of polyaniline within porous templates is presented. Preparation of porous anodic alumina templates by the anodization of aluminium is described in detail. The theoretical part covers the basics of the electrochemistry and it provides a broad overview of the porous anodic alumina.
Utilization of porous anodic alumina for fabrication of nanostructured layers and their photoelectrochemical and optical applications
Lednický, Tomáš ; Vanýsek, Petr (oponent) ; Sulka, Grzegorz (oponent) ; Bendová, Mária (vedoucí práce)
Porous anodic alumina (PAA) is an oxide layer formed by anodic oxidation of aluminium. In addition to its vast industrial use, its popularity has exponentially expanded into the field of nanotechnology due to the discovery of the self-ordering growth of PAA, leading to a honeycomb-like nanostructure. Together with a simple fabrication and tuneable properties, PAA represents an inexpensive alternative to the nanoscale world. In the same spirit, this PhD thesis deals with methods utilizing the PAA to fabricate functional nanostructures. The first part of the thesis is focused on the PAA-assisted formation of titanium dioxide (TiO2) nanocolumn arrays and their possible application as photoanodes for the water-splitting reaction. TiO2 nanocolumns are formed by anodisation of superimposed Al layer over titanium substrate being so-called ‘PAA-assisted anodisation’. The present study demonstrates the electrochemical properties and photoelectrochemical performance of nanocolumns formed from nitrogen-enriched substrates modified by various thermal treatments. The major finding was that their hollow morphology causes their poor performance. This issue was addressed by developing a novel anodising strategy that originates from the extensive study of anodising parameters and their effect on the morphology and stability of nanocolumns. The second part demonstrates the fabrication of well-ordered gold nanoparticles (AuNPs) on a transparent substrate as a localized surface plasmon resonance (LSPR) sensor element. A key-stone of this multidisciplinary method is a combination of a self-ordering behaviour of PAA that produces the template for controlled solid-state dewetting (SSD) of a subsequently deposited thin film of gold. This work includes the detailed technical aspects of complete fabrication, starting with the template production from an aluminium sheet to forming AuNPs and their transfer to a transparent substrate. This part is concluded with the characterization of fabricated AuNP nanocomposites with a practical comparison of their bulk refractive index sensitivity and stability in time. Results show this large-scale and inexpensive technique can easily compete with other, more demanding, AuNP fabrication technologies.
Porous-alumina-assisted formation of metal and metal-oxide nanostructures for use in advanced micro-devices
Kamnev, Kirill ; Mardare, Andrei Ionut (oponent) ; Blanchar, Xavier Correig (oponent) ; Mozalev, Alexander (vedoucí práce)
The anodization of metals through porous anodic alumina (PAA) matrix (PAA-assisted anodization) is used alternatively to nanoporous anodization or conventional nanofabrication methods for producing novel nanostructured metal oxides with improved characteristics. Enhancing properties of ZrO2 and HfO2 by nanostructuring possesses significant interest due to the active commercialization of these metal oxides. Nanostructuring ZrO2 and HfO2 by anodization is challenging because of early anodic-oxide crystallization and nearly zero cation transport number. These issues are addressed by a systematical investigation of anodizing behavior of Al superimposed on Zr or Hf layers. Reproducible PAA-assisted growth of ZrO2 nanostructures partially filling the pores of the PAA matrix is achieved for the first time. The PAA-embedded ZrO2 nanostructures demonstrate enhanced dielectric performance in a wide frequency range with low leakage current and high breakdown voltage, making them attractive for application in wet and hybrid electrolytic capacitors. The planarized films compatible with standard nanofabrication methods and comprising ZrO2 nanostructures fully filling the pores in the PAA matrix are synthesized by combining the PAA-assisted anodization of Zr with partial PAA dissolution. Such films are utilized in experimental MIM microcapacitors exhibiting low leakage current, high breakdown voltage, high energy density, low temperature coefficient of capacitance, and excellent capacitance-voltage linearity, which makes them perfect candidates for on-chip passive device integration. The PAA-assisted ZrO2 nanofilms are approbated for the first time to produce osteogenic bioceramic coatings. Such nanostructured ZrO2 bioceramic coatings can module cell-surface interactions and increase osteoblast mineralization 5-fold compared to flat ZrO2 anodic coating. The PAA-assisted nanostructured HfO2 films exhibit repeatable low-power eigh-wise bipolar resistive-switching properties, making them highly prominent as solid electrolytes in memristor applications. The PAA-assisted anodization of Hf combined with appropriate surface chemical modification is utilized for the first time for creating self-organized superhydrophobic, oil-repelling, visible light transparent, and antireflective nanostructured HfO2 coatings highly suitable for passivation of photovoltaic devices.
Utilization of porous anodic alumina for fabrication of nanostructured layers and their photoelectrochemical and optical applications
Lednický, Tomáš ; Vanýsek, Petr (oponent) ; Sulka, Grzegorz (oponent) ; Bendová, Mária (vedoucí práce)
Porous anodic alumina (PAA) is an oxide layer formed by anodic oxidation of aluminium. In addition to its vast industrial use, its popularity has exponentially expanded into the field of nanotechnology due to the discovery of the self-ordering growth of PAA, leading to a honeycomb-like nanostructure. Together with a simple fabrication and tuneable properties, PAA represents an inexpensive alternative to the nanoscale world. In the same spirit, this PhD thesis deals with methods utilizing the PAA to fabricate functional nanostructures. The first part of the thesis is focused on the PAA-assisted formation of titanium dioxide (TiO2) nanocolumn arrays and their possible application as photoanodes for the water-splitting reaction. TiO2 nanocolumns are formed by anodisation of superimposed Al layer over titanium substrate being so-called ‘PAA-assisted anodisation’. The present study demonstrates the electrochemical properties and photoelectrochemical performance of nanocolumns formed from nitrogen-enriched substrates modified by various thermal treatments. The major finding was that their hollow morphology causes their poor performance. This issue was addressed by developing a novel anodising strategy that originates from the extensive study of anodising parameters and their effect on the morphology and stability of nanocolumns. The second part demonstrates the fabrication of well-ordered gold nanoparticles (AuNPs) on a transparent substrate as a localized surface plasmon resonance (LSPR) sensor element. A key-stone of this multidisciplinary method is a combination of a self-ordering behaviour of PAA that produces the template for controlled solid-state dewetting (SSD) of a subsequently deposited thin film of gold. This work includes the detailed technical aspects of complete fabrication, starting with the template production from an aluminium sheet to forming AuNPs and their transfer to a transparent substrate. This part is concluded with the characterization of fabricated AuNP nanocomposites with a practical comparison of their bulk refractive index sensitivity and stability in time. Results show this large-scale and inexpensive technique can easily compete with other, more demanding, AuNP fabrication technologies.
Template assisted electrodeposition of multilayer nanostructures
Lednický, Tomáš ; Drbohlavová, Jana (oponent) ; Čechal, Jan (vedoucí práce)
This diploma thesis is focused on the fabrication of Au-PANI-Au nanowires. The fabrication of nanowires based on the electrochemical deposition of various metal and polymerization of polyaniline within porous templates is presented. Preparation of porous anodic alumina templates by the anodization of aluminium is described in detail. The theoretical part covers the basics of the electrochemistry and it provides a broad overview of the porous anodic alumina.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.