National Repository of Grey Literature 43 records found  1 - 10nextend  jump to record: Search took 0.00 seconds. 
Acoustic characteristics of 3D human vocal tract model with nasal cavities – preliminary experimental results
Radolf, Vojtěch ; Horáček, Jaromír ; Košina, Jan ; Vampola, T.
Acoustic resonance characteristics of 3D human vocal tract model with nasal and paranasal cavities were measured in three different ways: The excitation was realized by (1) self-oscillating vocal folds replica, (2) by a swept harmonic signal from an earphone placed instead of the vocal folds and (3) by a white noise signal from a loudspeaker located in front of the open mouth of the model. Resulting resonance frequencies are comparable for all excitation signals. These experiments were carried out to verify a complex mathematical model.
Experimental investigation of acoustic characteristics of 3D human vocal tract model with nasal cavities
Radolf, Vojtěch ; Horáček, Jaromír ; Košina, Jan ; Vampola, T.
The following experiments were carried out to be later used in the verification of a complex\nmathematical model of human voice production. Acoustic resonance characteristics of a 3D human voca tract model without and with nasal and paranasal cavities were measured in two different ways: The excitation was realized by (1) self-oscillating vocal folds replica and (2) by sine-tone sweeps from an earphone placed instead of the vocal folds. The resulting resonance and antiresonance frequencies were found to be comparable for both excitation signals.
Numerical investigation of acoustic characteristics of 3D human vocal tract model with nasal cavities
Vampola, T. ; Štorkán, J. ; Horáček, Jaromír ; Radolf, Vojtěch
Acoustic resonance characteristics of 3D human vocal tract model without and with nasal and\nparanasal cavities were computed. Nasal cavities (NC) form the side branches of the human vocal tract and exhibit antiresonance and resonance properties which influence the produced voice quality. Developed FE models of acoustic spaces of nasal and vocal tract for vowel /a:/ are used to study the influence of (NC) on phonation. Acoustics frequency-modal characteristics are studied by modal analysis and numerical simulation of acoustic signals in time domain is performed by transient analysis of the FE models.
Effect of synovial fluid composition and surface topography modification on lubrication of joint replacements
Hekrle, Pavel ; Vampola, Tomáš (referee) ; Vrbka, Martin (advisor)
The main objective of this diploma thesis is to determine the influence of synovial fluid compodition and the influence of surface microtextures on lubrication of hip join replacements. For all experiments, hip joint simulator based on the pendulum principle was utilized. Metal heads (CoCrMo) manufactured by B Braun company and and tailor made acetabular cups from optical glass were used as contact couples. Acetabulum dimensions were fabricated according to dimensions of real implants. Experiments with surface microtextures simulated walking cycle for 210 s and development of lubrication film over time was observed.Results have shown that all types of tested structures improved lubrication of contact area, where the best results were obtained for square and triangle shapes respectively. Second set of experiments was based on the fact, that the composition of synovial fluid of healthy people differs from the composition of patients with various stages of osteoarthritis. Therefore, experiments with different model fluids were compared, which in their composition correspond to different groups of patients. For the model fluid that corresponds to the largest number of cases, experiments with individual components and combinations thereof were subsequently performed to provide a more detailed description of how these components affect the film-forming mechanism. The results show, that a change in fluid composition of patients with osteoarthritis can have a major negative effect on fluid formation process within the pair.
Computationally Efficient Model of the Human Vocal Fold
Štorkán, J. ; Vampola, T. ; Horáček, Jaromír
One mass model of the vocal folds with three degrees of freedom in 2D space was created and used to simulate the movement of the vocal folds. Vocal folds are modeled as a solid mass stored flexibly in 2D. The model is excited by aerodynamic forces. The flow is solved by analytical model incompressible and non-viscous fluid with constant flow. In case of close of the glottis are aerodynamic forces replaced by Hertz model of the contact forces. Movement equations are solved by numerical method. The model allows to solve the movement of the vocal folds in the time domain, pressure field acting on the vocal folds or contact pressures.
Influence of the nasal cavities to human voice quality
Vampola, T. ; Horáček, Jaromír
Nasal cavities (NC) form the side branches of the human vocal tract and exhibit antiresonance and resonance properties which influence the produced voice quality. This study investigates the possibility of these resonances to contribute to the speaker's or singer's formant cluster around 3 - 5 kHz. A reduced finite element (FE) model was created which allows numerical simulation of the effects of changing the volumes of NC on the acoustic resonance and antiresonance characteristics of the vocal tract. This model, created from an accurate three-dimensional (3D) FE model of the human vocal tract for vowel [a:] and [i:] is computationally-effective and allows parametric changes of the volume connecting the nasal tract with the human vocal tract. Developed FE models of acoustic spaces of nasal and vocal tract for vowels /a:/ and /i:/ are used to study the influence of (NC) on phonation of these vowels. Acoustics frequency-modal characteristics are studied by modal analysis and numerical simulation of acoustic signals in time domain is performed by transient analysis of the FE models.
Influence of the velopharyngeal opening on human voice quality
Vampola, T. ; Horáček, Jaromír
The 3D FE models of the nasal cavities and adult female vocal tract were developed from computer tomography (CT) images for vowels /a:/ and /i:/. The interconnections between the oral and nasal cavities were created according to the anatomical literature. The acoustic frequency - modal characteristics of the FE models were studied by the modal analysis considering zero pressure at the lips and nose and the influence of velopharyngeal insufficiency on the first ten formants was evaluated.
Experimental investigation of phonation using artificial models of human vocal folds and vocal tract
Horáček, Jaromír ; Radolf, Vojtěch ; Bula, Vítězslav ; Košina, Jan ; Vampola, T. ; Dušková, Miroslava
The contribution presents results of in vitro measurements of voicing performed on originally developed models of the human vocal folds and vocal tract. The designed models are based on CT and MRI measurements of human subject during phonation. The measured phonation (aerodynamic, vibration and acoustic) chacteristics are comparable with values found in humans.
Using the proper orthogonal decomposition analysis for detecting pathologic vocal fold vibration
Štorkán, J. ; Vampola, T. ; Horáček, Jaromír
A three-dimensional (3D) finite element (FE) fully parametric model of the human larynx based on computer tomography (CT) measurements was developed and specially adapted for numerical simulation of vocal folds vibrations with collisions. The complex model consists of the vocal folds, arytenoids, thyroid and cricoid cartilages. The vocal fold tissue is modeled as a four layered material where part of the cover was substituted by a liquid layer modelling the superficial layer of lamina propria. The proper orthogonal decomposition (POD) analysis of the excited modes of vibration was used for detecting changes in vibration properties of the vocal folds caused by pathologic changes of vocal fold structure (vocal nodule).
Compensatory Vocal Folds for Source Voice Generation: Computational Modeling of Vocal Folds Function
Matug, Michal ; Vampola, Tomáš (referee) ; Horáček, Jaromír (referee) ; Švancara, Pavel (advisor)
This doctoral thesis focuses on computational modelling of human vocal folds and vocal tract functions using finite element method (FEM). Human voice is crucial in human communication. Therefore one of the main targets of current medicine is creation of artificial vocal folds, which would substitute the original vocal folds. The computational modelling can be used to understand principles of voice production, determination of parameters that the artificial vocal folds have to meet and verification of their functionality. First part of this thesis focuses on modelling of human voice creation by whisper. Influence of intraglottal gap on eigenvalues distribution for individual vowels was analysed using FEM vocal tract and trachea model. Further there is presented two-dimensional (2D) finite element model of the flow-induced self-oscillation of the human vocal folds in interaction with acoustic spaces of the vocal tract. The 2D vocal tract model was created on the basis of converting the data from magnetic resonance images (MRI). Explicit coupling scheme with separated solvers for structure and fluid domain was used for modelling of the fluid-structure interaction. Created computational model comprises: large deformations of the vocal folds tissue, contact between vocal folds, fluid-structure interaction, morphing the fluid mesh according to the vocal-fold motion (Arbitrary Lagrangian-Eulerian approach), unsteady viscous compressible or incompressible airflow described by the Navier-Stokes equations and airflow separation during glottis closure. This model is used to analyse the influence of stiffness and damping changes in individual vocal fold tissue layers (in particular in superficial lamina propria). Part of this computational analysis is also comparison of vocal folds behaviour for compressible and incompressible flow model. Videokymograms (VKG) are subsequently created from obtained results of FEM calculations which enable to compare individual variants between themselves and with motion of real human vocal folds. In next part of this thesis is presented three-dimensional (3D) finite element model of the flow-induced self-oscillation of the human vocal folds. This 3D model was created from a previous 2D model by extrude to the third direction. Using this model was again compared influence of compressible and incompressible flow model on vocal folds motion and generated sound by using videokymograms and acoustic spectra. The last part of this thesis focuses on the possibility to replace missing natural source voice in form reed-based element. Behaviour of reed-based element was analysed using computational modelling and using measurements on experimental physical model. The physical model enables changes in setting gap between reed and reed stop and performing acoustical and optical measurements.

National Repository of Grey Literature : 43 records found   1 - 10nextend  jump to record:
See also: similar author names
15 Vampola, T.