National Repository of Grey Literature 36 records found  previous11 - 20nextend  jump to record: Search took 0.01 seconds. 
Preparation of low-dimensional inorganic perovskites
Nedvěd, Matěj ; Dvořák, Petr (referee) ; Musálek, Tomáš (advisor)
This bachelor thesis deals with the perovskite CsPbBr3. The thesis presents properties and different ways of preparing nanostructures of this inorganic perovskite. The emphasis is placed on physical vapor deposition using effusion cells. The experiments carried out to prepare nanocrystals and nanowires and the subsequent analysis of their morphology, composition and optical properties are described. The effect of the electron beam and long-term exposure to air on the optical properties is studied. Also, the concept of an experiment that should result in the replacement of lead in the perovskite structure by tin is presented.
The deposition of Ga and GaN nanostructures on silicon and graphene substrate
Novák, Jakub ; Jarý, Vítězslav (referee) ; Mach, Jindřich (advisor)
The thesis is focused on the study of properties of GaN nanocrystals and Ga structures on the surface of silicon and graphene substrate. In the theoretical part of this thesis, the basic properties of Ga/GaN and graphene are described, as well as their applications or connection of both structures together in different devices. The ability of metal nanoparticles to enhance not only photoluminescence, due to the interaction of the material with surface plasmons, is also shown in several examples. The experimental part of the work first deals with the production and characterization of graphene sheets prepared by Chemical Vapor Deposition. Ga/GaN growth on both types of substrates was performed in a UHV chamber using an effusion cell for Ga deposition and an atomic ion source for nitridation. Prepared structures were characterized using various methods (XPS, SEM, AFM, Raman spectroscopy or photoluminescence). In the last step, GaN nanocrystals were coated with Ga islands to study the photoluminescence enhancement.
Optical properties of silicon nanostructures for photovoltaics
Salava, Jan
Title: Optical properties of silicon nanostructures for photovoltaics Author: Bc. Jan Salava Department: Department of Chemical Physics and Optics Supervisor: doc. RNDr. František Trojánek, Ph.D., Department of Chemical Physics and Optics Abstract: In the presented work silicon nanocrystals located in the SiC matrix are stu- died - samples dier in adding a dopant (boron) into the particular layer of structure during deposition by PECVD and in hydrogen passivation. Silicon nanocrystals are very important because of their eective photolumine- scence and absorption in visible part of the spectrum, which is not observed in bulk silicon. Properties of such structures are tunable by changing parameters during preparation with respect to the nal application. The basic idea of nanostructures integration in silicon solar cells is to increase the conversion eciency of the solar spectrum combining several thin layers of nanocrystals and bulk Si cell so that each layer of solar cell absorbs a certain part of the spectrum. The processes that take place in these structures immediately after excitation of carriers, however, are still not fully described. The goal of this work is to characterize these phenomena using methods of time-resolved spectroscopy. Another object is to describe the inuence of doping of the...
Laser spectroscopy of crystalline and nanocrystalline diamond
Zukerstein, Martin ; Trojánek, František (advisor)
The aim of this thesis is a study of NV centres in crystalline and nanocrystalline diamond by laser spectroscopy methods. In the theoretical part we discuss the laser spectroscopy methods, the studied material - diamond and the NV colour centres. In the experimental part we discuss the influence of nanoparticle size on luminescence spectra. We measure the luminescence of samples at room and also at low temperatures depending on the intensity and wavelength of the excitation. We study the photo-conversion of negatively charged state of NV centres to the neutral in detail. We make the time resolved measurements of the luminescence on streak camera for characterization the dynamical properties of the studied samples. The result is the comparison of lifetimes of the states in NV centres in selected samples.
Hyperfine interactions in maghemite and magnetite particles
Křišťan, Petr
Thesis is aimed at studying of magnetic iron oxide particles of submicron and nanoscale dimensions by means of nuclear magnetic resonance (NMR). 57 Fe NMR inves- tigations were carried out in composite bentonite/maghemite with respect to tempera- ture of calcination (Tcalc) during the sample preparation and in magnetite submicron powders with respect to various range of the particles size. One of the main findings is that increasing Tcalc improves resolution in the NMR spectra, which is most likely connected with higher degree of atomic ordering in the spinel structure. Evaluating the integral intensities of NMR spectra allowed us to determine the relative content of maghemite phase in particular samples of the series: the content rapidly grows for Tcalc up to ∼420 deg. An approach to distinguish signal from tetrahedral and octahedral irons was developed and tested on pure maghemite sample. Analysis based on vacancy- distribution models was performed in the spinel structure and the results were compared to the experiment. 57 Fe NMR spectra in submicron magnetite samples were found to differ markedly from spectrum of a single crystal. It was concluded that the investigated powders possess high amount of defects in the crystal structure or contain additional phase (probably closely related to the maghemite phase).
Ultrafast laser spectroscopy of semiconductor nanostructures
Chlouba, Tomáš ; Trojánek, František (advisor)
In this work we investigate changes in dynamics of CdSe nanocrystalline films caused by different annealing temperatures and different conditions during films growth. We use methods of time-resolved laser spectroscopy like time-resolved pump and probe and streak camera to study these dynamics. We also measured linear absorption and luminiscence. Our goal is to match measured dynamics with dynamics of other samples with different annealing temperatures and discuss the microscopic origin of these dynamics. Powered by TCPDF (www.tcpdf.org)
Deposition of GaN nanocrystals with Ga droplets
Novák, Jakub ; Voborný, Stanislav (referee) ; Mach, Jindřich (advisor)
This bachelor thesis deals with preparation and characterization of Ga structures and GaN nanocrystals. In the theoretical part, properties and applications of GaN are introduced. Further, some substrates for the growth and some techniques used for manufacturing of these structures are stated. Further, is also mentioned the photoluminiscence of GaN. The experimental part deals with preparation of Ga and GaN structures and combination of both. These structures were further analyzed by various methods such as XPS, SEM or photoluminiscence.
Dynamics of modified diamond nanocrystals in living cells
Majer, Jan ; Libusová, Lenka (advisor) ; Fišer, Radovan (referee)
Nanodiamonds (NDs) are an interesting platform in biological applications and disease treatment. Because of their photoluminescence properties and modifiable surface, they have been investigated as potential carriers for drugs and nucleic acids as well as fluorescent probes. In order to design NDs meeting specifically desired parameters, which would succeed in clinical trials and in medicinal therapy, understanding the mechanism of uptake and intracellular fate of NDs is crucial. The diploma thesis is focused on mechanistic investigation of ND-based nanoparticles delivering nucleic acids to human cells. First, NDs coated with a novel cationic co-polymer were prepared. NDs were then complexed with siRNA in order to transfect siRNA inside U-2 OS cells. NDs proved to be biocompatible and effective transfection particles as observed by qPCR and colorimetric cytotoxicity and cell viability tests. To examine ND uptake by cells, we inhibited endocytosis by specific inhibitors. Obtained results implicated that ND uptake was clathrin- and caveolin dependent. Nonetheless, more than half of NDs was internalized by cells in a different fashion. Some NDs colocalized with early endosomes, lysosomes and caveolin-derived endosomes after internalization. Other NDs resided either in unknown cell structures or escaped from...
Ultrafast response of electrons in nanostructured and disordered semiconductor systems studied by time-resolved terahertz spectroscopy
Zajac, Vít ; Kužel, Petr (advisor) ; Lloyd-Hughes, James (referee) ; Ostatnický, Tomáš (referee)
of Doctoral Thesis Title: Ultrafast response of electrons in nanostructured and disordered semiconductor systems studied by time-resolved terahertz spectroscopy Author: Vít Zajac Department / Institute: Institute of Physics of the Czech Academy of Sciences Supervisor of the doctoral thesis: doc. RNDr. Petr Kužel, Ph.D., Institute of Physics of the Czech Academy of Sciences Abstract: This thesis deals with charge transport in semiconducting nanomaterials on the picosecond time scale studied by time-resolved terahertz spectroscopy. The problematics of the effective response of composite materials is reviewed and the VBD effective medium model is formulated. The wave equation for the THz probing pulse propagating through inhomogeneously excited percolated and non-percolated semiconducting nanomaterials is solved. This theory is used to investigate charge transport in samples of nanoporous-Si-derived nanocrystals and in epitaxial Si nanocrystal superlattices. The experimental spectra are successfully modeled with the use of Monte Carlo calculations of charge carrier mobility in nanocrystals of corresponding sizes and degrees of percolation within the VBD approximation. It is found that nanocrystals from different regions of the nanocrystal size distribution of the sample dominate the signal in THz and...
Laser spectroscopy of crystalline and nanocrystalline diamond
Zukerstein, Martin ; Trojánek, František (advisor)
The aim of this thesis is a study of NV centres in crystalline and nanocrystalline diamond by laser spectroscopy methods. In the theoretical part we discuss the laser spectroscopy methods, the studied material - diamond and the NV colour centres. In the experimental part we discuss the influence of nanoparticle size on luminescence spectra. We measure the luminescence of samples at room and also at low temperatures depending on the intensity and wavelength of the excitation. We study the photo-conversion of negatively charged state of NV centres to the neutral in detail. We make the time resolved measurements of the luminescence on streak camera for characterization the dynamical properties of the studied samples. The result is the comparison of lifetimes of the states in NV centres in selected samples.

National Repository of Grey Literature : 36 records found   previous11 - 20nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.