National Repository of Grey Literature 7 records found  Search took 0.00 seconds. 
Myocardial phospholipases A2 and oxidative stress
Závišková, Kristýna ; Míčová, Petra (advisor) ; Chytilová, Anna (referee)
Heart and vascular diseases, in which oxidative stress plays an important role, are the most frequent cause of death in developed countries. Therefore today's researches focus on clarifying signaling pathway and their components that operates in these processes. One of the possible key factors can be phospholipases A2. These enzymes hydrolyze unsaturated fatty acids from C2 position on phospholipids, which easily subject to the oxidative modification due to their double bonds. There are five groups: the secreted, the cytosolic, the calcium independent, the platelet-activating factor acetylhydrolases and the lysosomal phospholipases A2. They differ in the requirement for calcium ions for its activity, molecular weight, position of disulfide bonds and amino acids sequences in the active site. Their main importance is to keep the stability and integrity of cell membranes and produce lipid signaling molecules (free fatty acids, lysophospholipids, eicosanoids). The phospholipases A2 play a dual role during oxidative stress in myocardium. First, they have a positive effect by protecting membranes against oxidative stress due to their higher affinity for removal of peroxidized fatty acids from membrane phospholipids. On the other hand, the phospholipases A2 can also cause destructive effects during...
The role of Arachidonic acid metabolites in cardiovascular system and signaling of heart failure
Liptáková, Andrea ; Žurmanová, Jitka (advisor) ; Holzerová, Kristýna (referee)
Arachidonic acid (AA) is polyunsaturated acid that plays an important role in regulation of physiology, bioenergetic and signalling cascades in the heart. AA released by phospholipase A2-catalysed hydrolysis of membrane phospholipids serves as substrate for cyclooxygenase, lipooxygenase and cytochrome P450 epoxygenase to produce a wide spectrum of lipid second messengers, eicosanoids. These very biologically potent molecules regulate a number of cellular processes in the cardiovascular system and changes in their composition and concentration significantly contribute to heart failure. The aim of this thesis was to summarize current knowledge about the role of AA in failing heart. Keywords : Heart, Arachidonic Acid, Heart Failure, Eicosanoids, Cardiovascular System
The role of Arachidonic acid metabolites in cardiovascular system and signaling of heart failure
Liptáková, Andrea ; Žurmanová, Jitka (advisor) ; Holzerová, Kristýna (referee)
Arachidonic acid (AA) is polyunsaturated acid that plays an important role in regulation of physiology, bioenergetic and signalling cascades in the heart. AA released by phospholipase A2-catalysed hydrolysis of membrane phospholipids serves as substrate for cyclooxygenase, lipooxygenase and cytochrome P450 epoxygenase to produce a wide spectrum of lipid second messengers, eicosanoids. These very biologically potent molecules regulate a number of cellular processes in the cardiovascular system and changes in their composition and concentration significantly contribute to heart failure. The aim of this thesis was to summarize current knowledge about the role of AA in failing heart. Keywords : Heart, Arachidonic Acid, Heart Failure, Eicosanoids, Cardiovascular System
Myocardial phospholipases A2 and oxidative stress
Závišková, Kristýna ; Míčová, Petra (advisor) ; Chytilová, Anna (referee)
Heart and vascular diseases, in which oxidative stress plays an important role, are the most frequent cause of death in developed countries. Therefore today's researches focus on clarifying signaling pathway and their components that operates in these processes. One of the possible key factors can be phospholipases A2. These enzymes hydrolyze unsaturated fatty acids from C2 position on phospholipids, which easily subject to the oxidative modification due to their double bonds. There are five groups: the secreted, the cytosolic, the calcium independent, the platelet-activating factor acetylhydrolases and the lysosomal phospholipases A2. They differ in the requirement for calcium ions for its activity, molecular weight, position of disulfide bonds and amino acids sequences in the active site. Their main importance is to keep the stability and integrity of cell membranes and produce lipid signaling molecules (free fatty acids, lysophospholipids, eicosanoids). The phospholipases A2 play a dual role during oxidative stress in myocardium. First, they have a positive effect by protecting membranes against oxidative stress due to their higher affinity for removal of peroxidized fatty acids from membrane phospholipids. On the other hand, the phospholipases A2 can also cause destructive effects during...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.