National Repository of Grey Literature 26 records found  1 - 10nextend  jump to record: Search took 0.01 seconds. 
Photocontrolled Biomolecules
Planer, Jakub ; Bartošík, Miroslav (referee) ; Vácha,, Robert (referee) ; Kulhánek, Petr (advisor)
This work is focused on molecular dynamics simulations of artificial photosensitive ion channel and AFM probe. To assemble this ion channel, DFT methods were employed for reparametrization of the GAFF force field describing the bridged azobenzene, which was used as a light controlled molecular switch. We proved by molecular dynamics simulations that newly developed parameters correctly describe behavior of assembled model of ion channel in a lipid bilayer. We also constructed a model of AFM probe and observed formation of water meniscus between the AFM probe and surface, both made of -quartz, by employing molecular dynamics simulations. A contribution of this work is the set of new parameters extending GAFF force field for description of the bridged azobenzene. We also verified functionality of ion channel model and model of AFM probe, which can be used for the further water meniscus studies.
Role of glycosylation of ionotropic glutamate receptors in mammalian neurons
Danačíková, Šárka ; Horák, Martin (advisor) ; Kriška, Ján (referee)
Glutamate is the most abundant excitatory neurotransmitter in the mammalian central nervous system. There are two distinct types of glutamate receptors, ionotropic and metabotropic, present in the mammalian excitatory synapses. My thesis is focused on the ionotropic glutamate receptors, which play critical roles in learning and memory formation. The main subtypes of ionotropic glutamate receptors are α-amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid (AMPA), N-methyl-D-aspartate (NMDA) and kainate receptors. All types of the ionotropic glutamate receptors, which are assembled as tetramers, contain many glycosylation sites, which can be modified by glycans or monosaccharides. The glycans and monosaccharides attached to the ionotropic glutamate receptors have been shown to regulate key processes such as folding of the subunits, transport to the cell surface as well as their functional properties. Recent literature also suggests that many neurological and psychiatric disorders such as schizophrenia exhibit abnormal glycosylation of ionotropic glutamate receptors. Thus, understanding of the molecular mechanisms, which regulate the glycosylation of the ionotropic glutamate receptors, may be important for developing new therapies for the patients with altered functioning of the glutamatergic synapses in the...
Functional and structural study of thermally activated TRP ion channels: The role evolutionarily conserved motifs in the TRPA1 modulation
Kádková, Anna ; Vlachová, Viktorie (advisor) ; Hudeček, Jiří (referee) ; Obšilová, Veronika (referee)
Ankyrin receptor TRPA1 is an ion channel widely expressed on primary afferent sensory neurons, where it acts as a polymodal sensor of nociceptive stimuli. Apart from pungent chemicals (e. g. isothiocyanates, cinnamaldehyde and its derivatives, acrolein, menthol), it could be activated by cold temperatures, depolarizing voltages or intracellular calcium ions. TRPA1 channel is a homotetramer in which each subunit consists of cytoplasmic N and C termini and a transmembrane region. The transmembrane part is organized into six alpha- helices connected by intra- and extracellular loops. The N terminus comprises a tandem set of 16 to 17 ankyrin repeats (AR), while the C terminus has a substantially shorter, dominantly helical structure. In 2015, a partial cryo-EM structure of TRPA1 was resolved; however, the functional roles of the individual regions of the receptor have not yet been fully understood. This doctoral thesis is concerned to elucidate the role of highly conserved sequence and structural motifs within the cytoplasmic termini and the S4-S5 region of TRPA1 in voltage- and chemical sensitivity of the receptor. The probable binding site for calcium ions that are the most important physiological modulators of TRPA1 was described by using homology modeling, molecular-dynamics simulations,...
Functional and pharmacological properties of GluN1/GluN2 and GluN1/GluN3 subtypes of NMDA receptors
Kolcheva, Marharyta ; Horák, Martin (advisor) ; Bohačiaková, Dáša (referee) ; Balaštík, Martin (referee)
(EN) N-methyl-D-aspartate receptors (NMDARs) are ionotropic glutamate receptors and they play a critical role in excitatory synaptic transmission in the mammalian central nervous system (CNS). Hyperactivity or hypoactivity of NMDARs can lead to a wide spectrum of pathological conditions and psychiatric disorders, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, epilepsy, schizophrenia. NMDARs form a heterotetrameric complex made up of GluN1, GluN2(A-D) and/or GluN3(A, B) subunits. Different subtypes of NMDARs could have various effects on disease pathogenesis and therefore it is crucial to investigate the specific role of each subunit in the regulation of normal NMDAR functioning. The regulation of NMDARs occurs at different levels, from early processing, including synthesis, assembly, quality control in the endoplasmic reticulum (ER), trafficking to the cell surface, to internalization, recycling, and degradation. In this dissertation, we mainly focused on determining the roles of extracellular and transmembrane regions of different subtypes of NMDARs in the regulation of their function. In particular, using electrophysiology and microscopy methods on HEK293 cells and cultured hippocampal neurons, we investigated: (i) the impact of N-glycosylation and different lectins on...
The development of a model system for studying chloride ion transport in the epithelial cells of patients with cystic fibrosis
Pecková, Kateřina ; Bořek Dohalská, Lucie (advisor) ; Kubíčková, Božena (referee)
Cystic fibrosis is caused by a genetic defect in the CFTR protein, whose main function is chloride transport across epithelial cells. The measurement of CFTR ability to transport chloride is considered a good, and perhaps, the only practical method to assess its activity. In this thesis, the transport of chloride ions across the CFTR channel was studied using airway epithelial cell lines of healthy patients (NuLi-1) and patients with cystic fibrosis (CuFi-1). A fluorescent method using a fluorescent chloride-sensitive probe N-(ethoxycarbonylmethyl)-6-methoxyquinolinium (MQAE) was chosen and optimized. This compound is providing fluorescence in the blue part of the spectrum and has the greatest sensitivity to chloride ions. In the development of an optimal method two approaches of chloride transport measurement were used. In the first experiment the secretion of the chloride ions to the buffer containing MQAE was measured. In the second one the dye had to be loaded into cells before performing experiment. Then, the MQAE fluorescence quenched by intracellular chloride was monitored by a change in the fluorescence intensity of the probe. The second method was considered as a usefull and more reproducible to study chloride transport across cell membranes. Moreover, the influence of the CFTR modulator...
Spontaneous calcium permeability of ionic channel of P2X receptor after substitution ofconserved tyrosine in the 1st transmembrae domajn
Rupert, Marian ; Zemková, Hana (advisor) ; Balík, Aleš (referee)
Purinergic receptors are membrane ion channels that are activated by extracellular ATP. In vertebrates, seven genes encode subunits of P2X receptors. The subunits, designated P2X1-7, are 40 - 50% identical in amino acid sequences. P2X receptors are composed of three subunits and are found as homo- and heterotrimers in tissues of vertebrates. P2X receptors have a wide distribution in the organism, functional receptors are found in neurons, glial cells, muscle cells and also in nonexcitable tissues as epithelial, endothelial, and in hemopoietic tissue. Purinergic signalling plays an important role in pain transmission, at CNS injury and immune processes. P2X receptor subunit consists of two transmembrane domains, extracellular domain and intracellular N-and C-termini. Each transmembrane domain contains two amino acids conserved across all P2X subunits. In the first transmembrane domain receptor P2X2 are that Gly30 and Tyr43. In previous experiments performed on P2X2 receptor, electrophysiological measurements demonstrated that substitution of conserved Tyr43 in the first transmembrane domain with alanine prolongs the deactivation time of ion channel after agonist wash out. This work is focused on clarifying the role of conserved tyrosine in the process of opening and closing of ion channel of P2X...
Regulation of NMDA receptor trafficking in mammalian cells
Hemelíková, Katarína ; Horák, Martin (advisor) ; Novotný, Jiří (referee) ; Valeš, Karel (referee)
N-methyl-D-aspartate (NMDA) receptors are a subclass of glutamate receptors that play an essential role in mediating excitatory neurotransmission and synaptic plasticity in the mammalian central nervous system (CNS). The activation of NMDA receptors plays a key role in brain development and memory formation. Abnormal regulation of NMDA receptors plays a critical role in the etiology of many neuropsychiatric disorders. NMDA receptors form a heterotetrameric complex composed of GluN1, GluN2(A-D) and GluN3(A, B) subunits. The NMDA receptors surface expression is regulated at multiple levels including early processing (synthesis, subunit assembly, endoplasmic reticulum (ER) processing, intracellular trafficking to the cell surface), internalization, recycling and degradation. NMDA receptors are regulated by the availability of GluN subunits within the ER, the presence of ER retention and export signals, and posttranslational modifications including phosphorylation and palmitoylation. However, the role of N-glycosylation in regulating of NMDA receptor processing has not been studied in detail. The aim of this study was to clarify the mechanisms of regulation of surface expression and functional properties of NMDA receptors. We used a combination of molecular biology, microscopy, biochemistry and...
Molecular mechanisms of activation and modulation of TRPV3 receptor
Chvojka, Štěpán ; Vlachová, Viktorie (advisor) ; Novotný, Jiří (referee)
Transient receptor potential vanilloid 3 receptor channel (TRPV3) is a thermosensitive ion channel expressed in skin keratinocytes. There, in a molecular complex with the epidermal growth factor receptor (EGFR) contributes to proliferation and terminal differentiation of keratinocytes, temperature detection, pain and pruritus. TRPV3 is activated by a number of exogenous compounds, such as carvacrol from oregano, thymol from thyme and eugenol from clove. Its unique feature is sensitization, TRPV3 channel activity successively increases upon repeated stimulation. The molecular basis of this process is not yet understood. One of the considered possibility is a direct phosphorylation of TRPV3 protein through signaling pathways involving EGFR and mitogen-activated protein kinase MAPK1 / MAPK3 (also called ERK2 / ERK1). In this thesis we investigated whether sensitization of TRPV3 which is expressed in a human cell line immortalized keratinocytes could be influenced by mutations on the predicted consensual phosphorylation sites for MAPK1 / MAPK3. We used electrophysiological patch-clamp technique and tested eight mutants, in which was threonine or serine replaced with aspartic acid mimicking phosphorylation. We identified six residues where the mutations influenced at least one of the functional...
Structural basis for interspecies differences in the TRPA1 receptor activation
Synytsya, Viktor ; Šulc, Miroslav (advisor) ; Hudeček, Jiří (referee)
Ankyrin transient receptor potential channel TRPA1 is an excitatory ion channel that transduces nociceptive information on primary aferent sensory nerves of mammals and other organisms. Structure function studies on TRPA1 are valuable for understanding the mechanisms of channel activation and for specific drug discovery efforts, however, significant interspecies differences hamper direct transfer of findings in animals to human. On the other hand, the interspecies differences may prompt identification of many important functional domains. The aim of this bachelor thesis is to give an overview of recent evidence regarding the functional and structural properties of human TRPA1 ion channels from the point of view of the comparison of the most important interspecies differences among TRPA1 orthologs. The experimental part is focused on the comparison of activation properties of human TRPA1 channel with a chimera in which the fifth transmembrane region was replaced by that from Drosophila melanogaster. The presented results obtained by electrophysiological technique patch-clamp demonstrate that outward membrane currents induced by depolarizing voltage are significantly reduced in chimera, which indicates an important role of the fifth transmembrane domain in TRPA1 channel gating (In Czech). Key words:...
Functional and structural study of thermally activated TRP ion channels: The role evolutionarily conserved motifs in the TRPA1 modulation
Kádková, Anna
Ankyrin receptor TRPA1 is an ion channel widely expressed on primary afferent sensory neurons, where it acts as a polymodal sensor of nociceptive stimuli. Apart from pungent chemicals (e. g. isothiocyanates, cinnamaldehyde and its derivatives, acrolein, menthol), it could be activated by cold temperatures, depolarizing voltages or intracellular calcium ions. TRPA1 channel is a homotetramer in which each subunit consists of cytoplasmic N and C termini and a transmembrane region. The transmembrane part is organized into six alpha- helices connected by intra- and extracellular loops. The N terminus comprises a tandem set of 16 to 17 ankyrin repeats (AR), while the C terminus has a substantially shorter, dominantly helical structure. In 2015, a partial cryo-EM structure of TRPA1 was resolved; however, the functional roles of the individual regions of the receptor have not yet been fully understood. This doctoral thesis is concerned to elucidate the role of highly conserved sequence and structural motifs within the cytoplasmic termini and the S4-S5 region of TRPA1 in voltage- and chemical sensitivity of the receptor. The probable binding site for calcium ions that are the most important physiological modulators of TRPA1 was described by using homology modeling, molecular-dynamics simulations,...

National Repository of Grey Literature : 26 records found   1 - 10nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.