National Repository of Grey Literature 153 records found  previous11 - 20nextend  jump to record: Search took 0.01 seconds. 
Studium nestabilní plastické deformace metodou akustické emise
Molnárová, Orsolya ; Dobroň, Patrik (advisor) ; Lukáč, Pavel (referee)
The influence of the strain rate and heat treatment on the occurrence of plastic instabilities in extruded AlSi1MgMn (6082) and cold rolled AlMg4.5Mn0.4 (5182) alloys was studied. The samples were uniaxially loaded at various strain rates and at room temperature (RT). The results are discussed using concurrent acoustic emission (AE) monitoring during mechanical testing and the AE parameters are correlated to the microstructure and to the stress-time curves. All samples exhibited the Portevin-Le Châtelier (PLC) effect of different types, dependently on the heat treatment and the applied strain rate. The occurrence of the PLC effect is manifested by burst AE signals with high amplitudes. Statistical analysis of the AE signals has shown the power-law probability distribution.
Thermophysical and electrical properties of illite-based ceramics
Csáki, Štefan ; Dobroň, Patrik (advisor) ; Koštial, Pavol (referee) ; Labaš, Vladimír (referee)
CSÁKI, Štefan: Thermophysical and electrical properties of illite-based ceramics. [Doctoral thesis]. Constantine the Philosopher University in Nitra. Faculty of Natural Sciences. Charles University. Faculty of Mathematics and Physics. Supervisor: prof. RNDr. Libor Vozár, CSc. (Constantine the Philosopher University in Nitra), doc. Ing. Patrik Dobroň, PhD. (Charles University). Nitra & Prague, 2018. 107 p. Illitic clays are of special importance in the ceramic industry. Therefore, a deep knowledge of the thermophysical processes, as well as the electric properties, is of special importance. The illitic clay originated in Northeastern Hungary was used in this thesis. The reactions, occurring during firing, were studied using thermal analyses (Differential thermal analysis, Thermogravimetry, Thermodilatometry) and special attention was paid to the measurement of the electrical conductivity (both DC and AC). Up to 250 řC, where the removal of the physically bond water (PBW) takes place, the dominant charge carriers were the H+ and OH- ions. After the PBW was removed, Na+ and K+ ions became the dominant charge carriers. During dehydroxylation (450 - 750 řC) H+ and OH- ions were freed from the illite structure, which supported the electrical conduction in the samples. At ~ 970 řC glassy phase appeared...
Investigation of basic deformation mechanisms of magnesium alloys by means of advanced in-situ methods and theoretical modeling
Čapek, Jan ; Mathis, Kristián (advisor) ; Landa, Michal (referee) ; Šiška, Filip (referee)
The work is focused on developing testing methods for investigating of the deformation mechanisms of magnesium alloys. The work involves the measurement of in-situ acoustic emission and neutron diffraction and comparison to the theoretical models. Mg + 1wt.% Zr alloy was selected for investigation of the compression - tension asymmetry. Advanced analysis of acoustic emission and neutron diffraction data revealed activation of different slip systems during deformation. Moreover, the different evolution of twinning was explained. The same methods were used to investigate the aluminum influence on deformation mechanisms. The hardening of basal slip and twinning and increasing importance of prismatic slip was observed.
Investigation of deformation mechanisms in Mg-Gd alloys
Szabóová, Andrea ; Mathis, Kristián (advisor) ; Drozdenko, Daria (referee)
Title: Investigation of deformation mechanisms in Mg-Gd alloys Author: Andrea Szabóová Department: Department of Physics of Materials Supervisor: doc. RNDr. Kristián Mathis, DrSc. Abstract: In the present work, the deformation behavior of magnesium-gadolinium binary alloys was investigated. Dependence on the concentration of Gd and deformation temperatures was studied. Extruded samples had relatively strong initial texture. Compression tests were done at room temperature and 200řC. Simultaneously with deformation acoustic emission was recorded. Data from acoustic emission was analyzed with advanced statistical methods. Results of the combination of these two experimental methods indicated that at the beginning of the deformation twinning is the dominant mechanism. In the following stage of plastic deformation non-basal slip systems became the governing deformation mechanism. With higher content of Gd the size of twins decreases as a result of the decreased mobility of twin boundaries caused by solute atoms. At higher temperatures twinning activity was increasing. In addition, results were confirmed by optical light and scanning electron microscopy. Keywords: magnesium alloy, deformation tests, acoustic emission, microscopy
Characterization of migmatite fracturing using ultrasonic methods
Petružálek, Matěj ; Vilhelm, Jan (advisor) ; Vavryčuk, Václav (referee) ; Koktavý, Pavel (referee)
Submitted PHD thesis is focused on fracturing process of migmatite, which is a low porosity anisotropic rock. Migmatite, from a locality Skalka, was chosen as a suitable experimental material, namely due to its macroscopically visible, plane-parallel structure (foliation). The fracturing was studied by means of uniaxial loading experiments on cylindrical samples with different dip of migmatite foliation: 13ř (subhorizontal), 81ř (subvertical) and oblique (47ř and 67ř). The net of eight piezoceramic transducers was employed for ultrasonic sounding (US) measurement and acoustic emission (AE) monitoring during the loading experiments. Realized study of migmatite fracturing is based on the interpretation of both mentioned ultrasonic methods. Part of this work was a software development, including its testing for processing and interpretation of measured AE and US data. Methodical part of the thesis consists of: development and testing of algorithms for automatic P wave arrival detection; introduction of anisotropic velocity model to describe magnitude and orientation of velocity anisotropy, as well as to localize AE events in anisotropic velocity field; determination of crack initiation stress using first arrival amplitude of US. Based on the interpretation of AE and US data, there was found a...
Study of deformation processes in hexagonal materials
Čapek, Jan ; Mathis, Kristián (advisor) ; Karlík, Miroslav (referee)
The deformation mechanisms of commercially pure magnesium using advanced in-situ methods were investigated in the present work. Compression and tensile test were done at room temperature. Simultaneously, the neutron diffraction was measured and the acoustic emission was recorded. The microstructure of the deformed material was also studied by means of optical microscopy and electron back-scattered diffraction. These measurements provided information about twin nucleation and growth, microstructure changes and the influence of the orientation of grains on the number of twins and their shape. The values obtained were compared to the Elasto-Plastic Self-Consistent model, which provides information about the activity of deformation mechanisms. We focused on clarifying the influence of twinning activity on asymmetry between tensile and compression deformation.
Study of cooperative dislocation phenomena in solids by the acoustic emission technique
Knapek, Michal ; Chmelík, František (advisor) ; Haušild, Petr (referee) ; Landa, Michal (referee)
Title: Study of cooperative dislocation phenomena in solids by the acoustic emis- sion technique Author: Michal KNAPEK Department: Department of Physics of Materials Supervisor: doc. RNDr. František Chmelík, CSc., Department of Physics of Materials Abstract: Plastic deformation of micron-scale crystalline materials differs con- siderably from bulk specimens, as it is characterized by random strain bursts. Three categories of metallic samples were investigated in this thesis: micron- scale copper micropillars with varied geometries, submillimeter-scale aluminum microwires, and aluminum and aluminum-magnesium salt-replicated foams. Very precise fabrication methods and sensitive measurement set-ups consisting of uni- axial compression and tensile tests with concurrent acoustic emission (AE) record- ing were developed. These fine methods allowed for investigations of effects re- lated to plastic deformation at micrometer scales, i.e. the dislocation dynamics associated with the stress drops. Size effects in plastic deformation, as well as clear correlations between the stress drops and the AE events, were found in mi- crosamples, confirming that dislocation avalanches are indeed responsible for the stochastic character of deformation processes also at microscales. Open-cell pure aluminum and aluminum-magnesium...
Influence Of Piezoelectric Material Properties On Impedance Characteristic And Improvements Of Calibration Equipment
Krejčí, Jakub
This paper deals with finite element simulations of impedance characteristics piezoelecticelements utilized in sensors of acoustic emission (AE). Coefficients of piezoelectric material arechanged to evaluate the sensitivity to their variation in case they are not known precisely, so to whichextent can they influence the sensitivity of the sensor. Result showed sensitivity on coefficient inc-matrix, mainly to coefficients c11 and c13. Second investigated topic is issue with test stand for calibrationof AE sensors, where output of force sensor was affected by parasite signal. By contactlessmeasurement with laser interferometer was discovered the parasite signal is caused by mechanic ofthe system and it is no threat for the measuring chain.
Simulations And Measurement Of Acoustic Emission Effects
Krejčí, Jakub
This paper deals with issue of method of acoustic emission and performed measurements of acoustic emission signals and simulation of this phenomenon. Main interest is given into measurement of acoustic emission transducer displacement to verify homogeneity on its surface in time and simulations by finite element method. Performed simulations deal with displacement calculation of calibration block after a capillary break, calculation of impedance characteristics of piezoelectric sensing element and their comparison with analytic solution or measurement.
Study of the degradation of Li-ion batteries using electrochemical and other nondestructive methods
Gavalierová, Veronika ; Binar, Tomáš (referee) ; Kazda, Tomáš (advisor)
This bachelor thesis is focused on the study of the degradation of Li-ion cells, using non-destructive methods. The theoretical part contains the basic issues of the technology, basic concepts and knowledge. Next, we move on to the practical part, where we verify the described methods in practice.

National Repository of Grey Literature : 153 records found   previous11 - 20nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.