National Repository of Grey Literature 5 records found  Search took 0.01 seconds. 
Molecular basis of deficit of F1Fo-ATP synthase and its impact on energy metabolism of a cell
Štufková, Hana ; Tesařová, Markéta (advisor) ; Kuncová, Jitka (referee) ; Janovská, Petra (referee)
Mitochondria's primary function is to produce energy through the process of oxidative phosphorylation. ATP synthase is a macromolecular rotary machine located in the inner mitochondrial membrane that catalyzes the synthesis of adenosine triphosphate (ATP) from adenosine diphosphate (ADP) and inorganic phosphate (Pi). The mitochondrial disorders due to ATP synthase deficiency represent a heterogeneous group of diseases characterized by variable severity of the phenotype with onset at birth or later in life till adulthood. Mutations in both, mitochondrial or nucelar DNA encoded genes, may result in ATP synthase impairment, either isolated or combined with deficits of other complexes of oxidative phosphorylation. The aims of the thesis were to characterize TMEM70 protein, an ATP synthase assembly factor, and to analyze the impact of novel disease variants leading to ATP synthase deficiency in patients' derived samples. TMEM70 is a 21 kDa hairpin structure protein localized in the inner mitochondrial membrane, with both termini oriented into the matrix, which forms higher oligomer structures. Our results demonstrated that the absence of TMEM70 protein leads to an isolated deficiency of complex V followed in some stage by adaptive/compensatory effect of respiratory chain complexes. Different severities...
Complex I of mitochondrial respiratory chain a its disorders.
Rodinová, Marie ; Hansíková, Hana (advisor) ; Kalous, Martin (referee)
NADH: ubiquinone oxidoreductase (Complex I) is a multisubunit protein complex of inner mitochondrial membrane. Complex I is the biggest and most complicated part of oxidative phosphorylation system, which is responsible for the cell ATP production. It consists of 45 subunits. 7 subunits are mitochondrial encoded, remainder 38 are nuclear encoded. NADH: ubiquinone oxidoreductase has L-shaped structure, which is built of two arms: membrane arm and matrix located peripheral arm. Complex I oxidize the NADH molecule. The electron transport is coupled with proton pumping across the inner mitochondrial membrane to intermembrane space, where proton gradient developed and which is used by ATP synthase to ATP synthesis. Deficiencies of NADH: ubiquinone oxidoreductase represent extensive, clinically and genetic heterogeneous group of mitochondrial diseases. Decrease of activity and amount of complex I, decrease of ATP production, changes of membrane potential, mitochondrial morphology and mitochondrial network and increasing of production of reactive oxygen species are found in cells with defects of NADH: ubiquinone oxidoreductase. Combination of this features lead to serious illnesses, which are almost fatal and we still haven't any useful therapy. Aim of this study is to summarize present knowledge about...
Genetické příčiny deficitu cytochrom c oxidázy u dětí
Vondráčková, Alžběta ; Tesařová, Markéta (advisor) ; Brdička, Radim (referee) ; Procházková, Dagmar (referee)
Mitochondria are the key source of vital ATP molecules, which are largely produced within cells by a system of oxidative phosphorylation (OXPHOS). Genetic defects affecting any of the components of the oxidative phosphorylation system or the structure and function of mitochondria lead to mitochondrial disorders, which occur at an incidence rate of 1 in 5000 live births. Cytochrome c oxidase (COX) is the terminal enzyme and electron acceptor of a respiratory chain that catalyses oxygen to produce a water molecule. In addition to complex I deficiency, isolated or combined COX deficiency is the most common respiratory chain defect in paediatric patients, and it can arise from mutations located either in mitochondrial DNA or in nuclear genes encoding the structural subunits or corresponding assembly factors of the enzyme complex. However, the molecular basis of COX deficiency remains elusive in many patients despite advances in the identification of an increasing number of mutations and genes involved in the disease. This thesis focuses on the identification of the genetic causes of mitochondrial diseases in a cohort of 60 unrelated Czech children with clinically and laboratory confirmed COX-deficiency. With the use of a high-resolution melting analysis mutation screen, four heterozygous sequence...
Genetické příčiny deficitu cytochrom c oxidázy u dětí
Vondráčková, Alžběta ; Tesařová, Markéta (advisor) ; Brdička, Radim (referee) ; Procházková, Dagmar (referee)
Mitochondria are the key source of vital ATP molecules, which are largely produced within cells by a system of oxidative phosphorylation (OXPHOS). Genetic defects affecting any of the components of the oxidative phosphorylation system or the structure and function of mitochondria lead to mitochondrial disorders, which occur at an incidence rate of 1 in 5000 live births. Cytochrome c oxidase (COX) is the terminal enzyme and electron acceptor of a respiratory chain that catalyses oxygen to produce a water molecule. In addition to complex I deficiency, isolated or combined COX deficiency is the most common respiratory chain defect in paediatric patients, and it can arise from mutations located either in mitochondrial DNA or in nuclear genes encoding the structural subunits or corresponding assembly factors of the enzyme complex. However, the molecular basis of COX deficiency remains elusive in many patients despite advances in the identification of an increasing number of mutations and genes involved in the disease. This thesis focuses on the identification of the genetic causes of mitochondrial diseases in a cohort of 60 unrelated Czech children with clinically and laboratory confirmed COX-deficiency. With the use of a high-resolution melting analysis mutation screen, four heterozygous sequence...
Complex I of mitochondrial respiratory chain a its disorders.
Rodinová, Marie ; Kalous, Martin (referee) ; Hansíková, Hana (advisor)
NADH: ubiquinone oxidoreductase (Complex I) is a multisubunit protein complex of inner mitochondrial membrane. Complex I is the biggest and most complicated part of oxidative phosphorylation system, which is responsible for the cell ATP production. It consists of 45 subunits. 7 subunits are mitochondrial encoded, remainder 38 are nuclear encoded. NADH: ubiquinone oxidoreductase has L-shaped structure, which is built of two arms: membrane arm and matrix located peripheral arm. Complex I oxidize the NADH molecule. The electron transport is coupled with proton pumping across the inner mitochondrial membrane to intermembrane space, where proton gradient developed and which is used by ATP synthase to ATP synthesis. Deficiencies of NADH: ubiquinone oxidoreductase represent extensive, clinically and genetic heterogeneous group of mitochondrial diseases. Decrease of activity and amount of complex I, decrease of ATP production, changes of membrane potential, mitochondrial morphology and mitochondrial network and increasing of production of reactive oxygen species are found in cells with defects of NADH: ubiquinone oxidoreductase. Combination of this features lead to serious illnesses, which are almost fatal and we still haven't any useful therapy. Aim of this study is to summarize present knowledge about...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.