National Repository of Grey Literature 5 records found  Search took 0.00 seconds. 
A study of the temperature sensitivity of the human TRPA1 channel
Barvíková, Kristýna ; Šulc, Miroslav (advisor) ; Černá, Věra (referee)
Transient receptor potential (TRP) ion channels play important physiological roles in the detection of environmental stimuli that occur primarily at the peripheral terminals of specialized sensory neurons. The recently resolved cryo-electron microscopy structures and molecular biological techniques have provided new tools that enable to study these channels in relation to their function, and thus to understand more deeply their pharmacology and physiology. The aim of this bachelor thesis is to give an overview of the current status of research on the ankyrin TRP channel subtype 1 (TRPA1), a channel activated by diverse irritant chemical stimuli but also by temperature changes. The experimental part is focused on the elucidation of the role of the sensor domain in thermal sensitivity of the TRPA1 channel. Using whole-cell patch-clamp electrophysiological technique, the presented results demonstrate that the sensor is an important determinant of voltage-dependent gating. Mutation of the conserved tyrosine in the center of the sensor resulted in channels with clearly different activation kinetics and increased chemical responses upon increasing the temperature from 25 řC to 35 řC. Key words: TRP ion channel, ankyrin receptor, nociception, structure-function, carvacrol
Structural basis for interspecies differences in the TRPA1 receptor activation
Synytsya, Viktor ; Šulc, Miroslav (advisor) ; Hudeček, Jiří (referee)
Ankyrin transient receptor potential channel TRPA1 is an excitatory ion channel that transduces nociceptive information on primary aferent sensory nerves of mammals and other organisms. Structure function studies on TRPA1 are valuable for understanding the mechanisms of channel activation and for specific drug discovery efforts, however, significant interspecies differences hamper direct transfer of findings in animals to human. On the other hand, the interspecies differences may prompt identification of many important functional domains. The aim of this bachelor thesis is to give an overview of recent evidence regarding the functional and structural properties of human TRPA1 ion channels from the point of view of the comparison of the most important interspecies differences among TRPA1 orthologs. The experimental part is focused on the comparison of activation properties of human TRPA1 channel with a chimera in which the fifth transmembrane region was replaced by that from Drosophila melanogaster. The presented results obtained by electrophysiological technique patch-clamp demonstrate that outward membrane currents induced by depolarizing voltage are significantly reduced in chimera, which indicates an important role of the fifth transmembrane domain in TRPA1 channel gating (In Czech). Key words:...
A study of the temperature sensitivity of the human TRPA1 channel
Barvíková, Kristýna ; Šulc, Miroslav (advisor) ; Černá, Věra (referee)
Transient receptor potential (TRP) ion channels play important physiological roles in the detection of environmental stimuli that occur primarily at the peripheral terminals of specialized sensory neurons. The recently resolved cryo-electron microscopy structures and molecular biological techniques have provided new tools that enable to study these channels in relation to their function, and thus to understand more deeply their pharmacology and physiology. The aim of this bachelor thesis is to give an overview of the current status of research on the ankyrin TRP channel subtype 1 (TRPA1), a channel activated by diverse irritant chemical stimuli but also by temperature changes. The experimental part is focused on the elucidation of the role of the sensor domain in thermal sensitivity of the TRPA1 channel. Using whole-cell patch-clamp electrophysiological technique, the presented results demonstrate that the sensor is an important determinant of voltage-dependent gating. Mutation of the conserved tyrosine in the center of the sensor resulted in channels with clearly different activation kinetics and increased chemical responses upon increasing the temperature from 25 řC to 35 řC. Key words: TRP ion channel, ankyrin receptor, nociception, structure-function, carvacrol
Structural basis for interspecies differences in the TRPA1 receptor activation
Synytsya, Viktor ; Šulc, Miroslav (advisor) ; Hudeček, Jiří (referee)
Ankyrin transient receptor potential channel TRPA1 is an excitatory ion channel that transduces nociceptive information on primary aferent sensory nerves of mammals and other organisms. Structure function studies on TRPA1 are valuable for understanding the mechanisms of channel activation and for specific drug discovery efforts, however, significant interspecies differences hamper direct transfer of findings in animals to human. On the other hand, the interspecies differences may prompt identification of many important functional domains. The aim of this bachelor thesis is to give an overview of recent evidence regarding the functional and structural properties of human TRPA1 ion channels from the point of view of the comparison of the most important interspecies differences among TRPA1 orthologs. The experimental part is focused on the comparison of activation properties of human TRPA1 channel with a chimera in which the fifth transmembrane region was replaced by that from Drosophila melanogaster. The presented results obtained by electrophysiological technique patch-clamp demonstrate that outward membrane currents induced by depolarizing voltage are significantly reduced in chimera, which indicates an important role of the fifth transmembrane domain in TRPA1 channel gating (In Czech). Key words:...
Functional role of cytoplasmic domains in the gating of TRPA1 channel
Vašková, Jana ; Vlachová, Viktorie (advisor) ; Zemková, Hana (referee)
The transient receptor potential ankyrin 1 (TRPA1) ion channel is expressed in a subset of primary afferent neurones where it is activated by a variety of pungent and chemically reactive compounds such as allyl isothiocyanate or cinnamaldehyde. This voltage- dependent channel is activated through covalent modification of cytoplasmic cysteines and, from the cytoplasmic side, is also critically regulated by calcium ions. Both, amino (N-) and carboxyl (C-) termini have been shown to be involved in these processes. Using electrophysiological and molecular-biology techniques, we explored the role of specific cytoplasmic domains in the activation of TRPA1. By measuring chemically-, voltage-, and calcium-activated membrane TRPA1-mediated currents, we identified highly conserved serine and threonine residues along the N-terminal ankyrin repeat domain, mutation of which strongly affected responses of the channel. In addition, using C-terminally truncated construct previously reported to be involved in calcium regulation, we present a new finding that the distal C-terminal tail contributes to voltage-dependent activation of TRPA1.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.