National Repository of Grey Literature 3 records found  Search took 0.01 seconds. 
Development of a sensing platform for the study of physiological functions of living cells
Marková, Aneta ; Víteček, Jan (referee) ; Vala, Martin (advisor)
The aim was to develop a sensing platform on the base of organic electrochemical transistor (OECT). The focus was on the preparation of proper electrode system and on optimalization of properties of thin layer of organic semiconductor. As a base, commercial glass substrates with integrated indium-tin oxide electrodes were chosen. Thin layers were prepared from organic semiconductor poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) by spin-coating. Four formulations of material were studied. Layers with different thickness were prepared and the dependence of transconductance on the thickness of the layer and ratio of width and length was observed. The degradation of electrode system was solved by galvanic plating with gold. Attention was also paid to modifications to PEDOT: PSS. It has been found that the optimal layer thickness for use in sensors is approximately 150 nm. By reducing the series resistance by using a silver paste, the transconductance of 23 mS was obtained for the Ink 2, for the Ink 3 the transconductance was 44 mS. Sensoric platforms with these transconductances can be used for detection of physiological functions of electrogenic cells, e.g. cardiomyocytes.
Development of a sensing platform for the study of physiological functions of living cells
Marková, Aneta ; Víteček, Jan (referee) ; Vala, Martin (advisor)
The aim was to develop a sensing platform on the base of organic electrochemical transistor (OECT). The focus was on the preparation of proper electrode system and on optimalization of properties of thin layer of organic semiconductor. As a base, commercial glass substrates with integrated indium-tin oxide electrodes were chosen. Thin layers were prepared from organic semiconductor poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) by spin-coating. Four formulations of material were studied. Layers with different thickness were prepared and the dependence of transconductance on the thickness of the layer and ratio of width and length was observed. The degradation of electrode system was solved by galvanic plating with gold. Attention was also paid to modifications to PEDOT: PSS. It has been found that the optimal layer thickness for use in sensors is approximately 150 nm. By reducing the series resistance by using a silver paste, the transconductance of 23 mS was obtained for the Ink 2, for the Ink 3 the transconductance was 44 mS. Sensoric platforms with these transconductances can be used for detection of physiological functions of electrogenic cells, e.g. cardiomyocytes.

See also: similar author names
1 Víteček, Jakub
5 Víteček, Jiří
Interested in being notified about new results for this query?
Subscribe to the RSS feed.