No exact match found for Sitek,, Libor, using Sitek Libor instead...
National Repository of Grey Literature 94 records found  1 - 10nextend  jump to record: Search took 0.04 seconds. 
RESEARCH AND DEVELOPMENT COMPOSITE MATERIAL WITH A HIGHER RESISTANCE TO HIGH TEMPERATURES
Válek, Jaroslav ; Durica,, Tibor (referee) ; Kolář,, Karel (referee) ; Sitek,, Libor (referee) ; Bodnárová, Lenka (advisor)
Concrete has many advantageous properties as regards resistance to fire. It is non-flammable and it has a low thermal conductivity. However, concrete structures, which are not designed for resistance against fire, show significant damage after heating. In particular, the explosive flaking with the consequence of weakening the reinforced concrete cross-section and exposing the steel reinforcement to the temperatures higher than critical temperature of reinforcement. There are only a few possible measures of preventing or mitigating the effects temperature load used. Ways of protection can be divided into two systems: active and passive. Active systems are designed to ensure the greatest possible reduction of temperatures the concrete is exposed to. Passive systems directly resist to high temperatures and fire. Design of composition of concrete with the aim of higher resistance to exposition to high temperatures belongs among the passive systems. A part of the work focuses on summary searches of the problems of concrete and reinforced concrete structures exposed to high temperatures and fire. The goal of the work is defining requirements for cement matrix based composite material and its design ensuring the highest possible resistance to high temperatures or direct fire.
Study of the behavior of selected rocks at high temperatures
Holanec, Aleš ; Sitek,, Libor (referee) ; Bodnárová, Lenka (advisor)
The diploma thesis deals with the observation and diagnostics of transformations that take place in stone slabs of different mineralogical composition during heating to high temperatures. The theoretical part of the thesis deals with a summary of available information about selected types of rocks. Furthermore, it presents findings from the experimental thermal loading of a granite sample. The principles and instruments of laboratory experimental methods that are used to judge the resistance of rocks are described in detail. In the experimental part, the testing methodology is proposed, the procedure of production of rock test specimens is described and the way in which the thermal loading of stone slabs took place is explained. The results of the experiments are shown in the tables and graphs. A comparison of individual tests and properties of selected samples and evaluation of the obtained results is performed.
Usability of hig speed water jet in civil engineering
Boucníková, Veronika ; Sitek,, Libor (referee) ; Bodnárová, Lenka (advisor)
The bachelor thesis deals with possibilities of using high-speed water jet in construction industry. In the theoretical part, water jet technology was generally described and a research for use in the construction industry with an emphasis on the application of concrete structures redevelopment and the process of interaction of water jet with concrete was done. Furthermore, the safety risks during work with high-speed water jet and the possibilities of recycling of waste generated by the use of this technology were evaluated. In the experimental part were prepared concrete samples with dispersed concrete reinforcement. The characteristics of the concrete samples were determined and the depth and appearance of the cross-section after interaction with the high-speed water jet was evaluated.
Study of thermal insulation properties of cement concrete exposed to high temperature
Nováková, Iveta ; Sitek,, Libor (referee) ; Bodnárová, Lenka (advisor)
Master`s thesis is divided in to two parts, practical and theoretical. In theoretical part are listed basic information’s about light weight concrete, special emphasis are given to characteristic and practical application of compact light weight concrete with Liapor aggregates. In this study is described influence of high temperature on concrete structure and chemical, mechanical and physical changes, which take place during exposal to high temperatures. Further is evaluated surface permeability of concrete and addition of polypropylene fibres to concretes resistive to high temperatures. The practical part deals with design, production and testing of cement based concrete with use of different aggregates (light weight aggregates Liapor, basalt). The properties and use for applications in high temperatures is also mentioned. The influence of high temperature on strength, absorption, thermal conductivity, changes of surface permeability and degradation of testing specimens due to heat loads according to normative heat curve (ISO 834). For better transparency are experimental tests divided in to five phases and the measured values are evaluated on the end of each phase. In conclusion are resumed all knowledge’s obtained by testing and evaluated the most suitable formulation. The approach for further research is also mentioned.
Studying the behavior of concrete at high temperatures
Čonka, Ladislav ; Sitek,, Libor (referee) ; Bodnárová, Lenka (advisor)
The thesis is focused on the current issues of concrete resistance to high temperatures. The theoretical part has been processed the changes taking place in the individual components of concrete and changes affecting the physical - mechanical properties of concrete and color-changing effects manifesting high. In the experimental part of the load was, carried concrete test samples to a temperature of 400 ° C, 600 ° C and 800 ° C. After the thermal load, has been on test samples tested changes in physico - mechanical properties, especially concrete compressive strength, water absorption but also a visual assessment of the concrete surface
BEHAVIOUR OF CEMENTITIOUS COMPOSITES EXPOSED TO HIGH TEMPERATURES
Nováková, Iveta ; Chobola, Zdeněk (referee) ; Sitek,, Libor (referee) ; Wallevik, Ólafur Haralds (referee) ; Pimienta, Pierre (referee) ; Bodnárová, Lenka (advisor)
Fire resistance is becoming increasingly important along with the development of new concrete types with high strength and dense structure with reduced porosity. Such concrete types are susceptible to fire spalling and extensive crack formation. At the moment, there are a limited number of methods for enhancement of fire resistance of existing structures, which could be applied in underground structures with restricted space and limited air exchange, such as tunnels, underground garages or nuclear powerplants. This work is focused on the development of two methods, and both are dealing with porous structure modification. The first method is intentional heat treatment (IHT) method, suitable for the enhancement of fire resistance of existing structures. The second method emphasized the design of air-entrained concrete (AeA-FiResCrete) with the use of “new generation” air-entraining agents suitable for enhancement of fire resistance of newly designed concrete. Testing of compressive strength, porous structure modification was completed by the analysis of “moisture clog,” which contributes to explosive spalling and extensive cracking. The efficiency of developing methods was verified during large-scale testing according to modified ISO834 (m-ISO) curve. No extensive crack formation or explosive spalling was observed during the exposure period during the large-scale testing of slabs with the applied IHT method. The total thickness of the IHT method with configuration IHT200/2, composed of IHT zone and IHT transition zone, penetrated to the depth of 25,5 to 43,0 mm depending upon various concrete types. Moisture clog in AeA-FiResCrete was more significant than in the case of slabs with applied IHT method, and it could be concluded that the IHT method enhances fire resistance of concrete exposed to elevated temperatures without influencing its compressive strength and durability. Results from AeA-FiResCrete testing showed only a slight improvement of its fire resistance.
Diagnostic properties of concrete exposed to high temperatures
Hudský, Petr ; Sitek,, Libor (referee) ; Bodnárová, Lenka (advisor)
This master’s thesis studies the problems of high temperatures on cement concretes, their following diagnostics from pre-treatment to rehabilitation, the emphasis was on the use of high-speed water jet. In the experimental part of the design of a concrete composition with basalt aggregate. Were reviewed the physico-mechanical properties after thermal loading. The influence of pressure water jet on the thermal load on concrete, pull-off test, the volume of the removed concrete with a strength evaluation and comparison.
Study of resistance of selected aggregates to high temperatures
Holanec, Aleš ; Sitek,, Libor (referee) ; Bodnárová, Lenka (advisor)
The thesis deals with the monitoring of changes taking place in natural stones and aggregates under high temperatures. The theoretical part of the work provides information about basic groups of rocks, the technology of processing the natural stone and primarily about the study of behavior of natural stone and aggregates at high temperatures. Also some findings from different research works aimed at monitoring the behavior of rocks at high temperatures are presented. In the experimental part a selection of rocks with a higher expected resistance to high temperatures is made, including detailed information and description. Further in this section we provide the comparison of the properties of individual rocks. Later we describe the most important methods of testing, the procedure of preparation of rock samples and we design an experiment to use for evaluation of resistance of rocks and aggregates under high temperatures.
Study of the behavior of selected rocks at high temperatures
Holanec, Aleš ; Sitek,, Libor (referee) ; Bodnárová, Lenka (advisor)
The diploma thesis deals with the observation and diagnostics of transformations that take place in stone slabs of different mineralogical composition during heating to high temperatures. The theoretical part of the thesis deals with a summary of available information about selected types of rocks. Furthermore, it presents findings from the experimental thermal loading of a granite sample. The principles and instruments of laboratory experimental methods that are used to judge the resistance of rocks are described in detail. In the experimental part, the testing methodology is proposed, the procedure of production of rock test specimens is described and the way in which the thermal loading of stone slabs took place is explained. The results of the experiments are shown in the tables and graphs. A comparison of individual tests and properties of selected samples and evaluation of the obtained results is performed.
BEHAVIOUR OF CEMENTITIOUS COMPOSITES EXPOSED TO HIGH TEMPERATURES
Nováková, Iveta ; Chobola, Zdeněk (referee) ; Sitek,, Libor (referee) ; Wallevik, Ólafur Haralds (referee) ; Pimienta, Pierre (referee) ; Bodnárová, Lenka (advisor)
Fire resistance is becoming increasingly important along with the development of new concrete types with high strength and dense structure with reduced porosity. Such concrete types are susceptible to fire spalling and extensive crack formation. At the moment, there are a limited number of methods for enhancement of fire resistance of existing structures, which could be applied in underground structures with restricted space and limited air exchange, such as tunnels, underground garages or nuclear powerplants. This work is focused on the development of two methods, and both are dealing with porous structure modification. The first method is intentional heat treatment (IHT) method, suitable for the enhancement of fire resistance of existing structures. The second method emphasized the design of air-entrained concrete (AeA-FiResCrete) with the use of “new generation” air-entraining agents suitable for enhancement of fire resistance of newly designed concrete. Testing of compressive strength, porous structure modification was completed by the analysis of “moisture clog,” which contributes to explosive spalling and extensive cracking. The efficiency of developing methods was verified during large-scale testing according to modified ISO834 (m-ISO) curve. No extensive crack formation or explosive spalling was observed during the exposure period during the large-scale testing of slabs with the applied IHT method. The total thickness of the IHT method with configuration IHT200/2, composed of IHT zone and IHT transition zone, penetrated to the depth of 25,5 to 43,0 mm depending upon various concrete types. Moisture clog in AeA-FiResCrete was more significant than in the case of slabs with applied IHT method, and it could be concluded that the IHT method enhances fire resistance of concrete exposed to elevated temperatures without influencing its compressive strength and durability. Results from AeA-FiResCrete testing showed only a slight improvement of its fire resistance.

National Repository of Grey Literature : 94 records found   1 - 10nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.