National Repository of Grey Literature 3 records found  Search took 0.00 seconds. 
Spontaneous calcium permeability of ionic channel of P2X receptor after substitution ofconserved tyrosine in the 1st transmembrae domajn
Rupert, Marian ; Zemková, Hana (advisor) ; Balík, Aleš (referee)
Purinergic receptors are membrane ion channels that are activated by extracellular ATP. In vertebrates, seven genes encode subunits of P2X receptors. The subunits, designated P2X1-7, are 40 - 50% identical in amino acid sequences. P2X receptors are composed of three subunits and are found as homo- and heterotrimers in tissues of vertebrates. P2X receptors have a wide distribution in the organism, functional receptors are found in neurons, glial cells, muscle cells and also in nonexcitable tissues as epithelial, endothelial, and in hemopoietic tissue. Purinergic signalling plays an important role in pain transmission, at CNS injury and immune processes. P2X receptor subunit consists of two transmembrane domains, extracellular domain and intracellular N-and C-termini. Each transmembrane domain contains two amino acids conserved across all P2X subunits. In the first transmembrane domain receptor P2X2 are that Gly30 and Tyr43. In previous experiments performed on P2X2 receptor, electrophysiological measurements demonstrated that substitution of conserved Tyr43 in the first transmembrane domain with alanine prolongs the deactivation time of ion channel after agonist wash out. This work is focused on clarifying the role of conserved tyrosine in the process of opening and closing of ion channel of P2X...
Mechanisms of potential toxic effects of bisphenol A on the endocrine system
Zachardová, Lenka ; Novotný, Jiří (advisor) ; Rupert, Marian (referee)
Bisphenol A (BPA) has already been used in the chemical industry for several decades. Since that time, a huge amount of in vitro and in vivo studies have been accumulated summarizing the molecular mechanisms of BPA causing disruption in endocrine homeostasis in all kinds of biological models. It enters the body from external environment; however, the main source of penetration is through consumption of food and liquids that are in contact with materials containing the mentioned xenoestrogen. The hydroxyl group within BPA phenol ring enables binding to transmembrane G- protein-coupled estrogen receptors and a number of nuclear receptors affecting hormonal system and resulting in alterations in signalling pathways. BPA induces oxidative stress and interferes with regulation factors functions at gene, cell and tissue level. Disruptive effects are associated with developmental, reproductive, cardiovascular, immune and neurobiological disorders. This thesis is aiming to sum up existing findings about the molecular mechanisms of BPA toxicity in the endocrine system mainly using Mus musculus model. Keywords: BPA, endocrine system, nuclear receptors, GPER, oxidative stress.
Spontaneous calcium permeability of ionic channel of P2X receptor after substitution ofconserved tyrosine in the 1st transmembrae domajn
Rupert, Marian ; Zemková, Hana (advisor) ; Balík, Aleš (referee)
Purinergic receptors are membrane ion channels that are activated by extracellular ATP. In vertebrates, seven genes encode subunits of P2X receptors. The subunits, designated P2X1-7, are 40 - 50% identical in amino acid sequences. P2X receptors are composed of three subunits and are found as homo- and heterotrimers in tissues of vertebrates. P2X receptors have a wide distribution in the organism, functional receptors are found in neurons, glial cells, muscle cells and also in nonexcitable tissues as epithelial, endothelial, and in hemopoietic tissue. Purinergic signalling plays an important role in pain transmission, at CNS injury and immune processes. P2X receptor subunit consists of two transmembrane domains, extracellular domain and intracellular N-and C-termini. Each transmembrane domain contains two amino acids conserved across all P2X subunits. In the first transmembrane domain receptor P2X2 are that Gly30 and Tyr43. In previous experiments performed on P2X2 receptor, electrophysiological measurements demonstrated that substitution of conserved Tyr43 in the first transmembrane domain with alanine prolongs the deactivation time of ion channel after agonist wash out. This work is focused on clarifying the role of conserved tyrosine in the process of opening and closing of ion channel of P2X...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.