National Repository of Grey Literature 1 records found  Search took 0.01 seconds. 
Preparation of uniform superparamagnetic particles with polymer coating for biomedical applications
Patsula, Vitalii ; Horák, Daniel (advisor) ; Sysel, Petr (referee) ; Matějíček, Pavel (referee)
Aim of this thesis was to design and prepare polymer-coated monodisperse Fe3O4 nanoparticles as a safe and non-toxic contrast agent for magnetic resonance imaging (MRI) and heat mediator for hyperthermia. Uniform superparamagnetic Fe3O4 nanoparticles were synthesized by thermal decomposition of Fe(III) oleate, mandelate, or glucuronate in high- boiling solvents at temperature >285 řC. Size of the particles was controlled in the range of 8- 27 nm by changing reaction parameters, i.e., temperature, type of iron precursor, and concentration of stabilizer (oleic acid and/or oleylamine), while preserving uniformity of the nanoparticles. Because particles contained hydrophobic stabilizer on the surface, they were dispersible only in organic solvents. To ensure water dispersibility, oleic acid on the particle surface was replaced by hydrophilic and biocompatible methoxy-poly(ethylene glycol) (PEG) and poly(3-O-methacryloyl-α-D-glucopyranose) by ligand exchange. Polymers were previously terminated with anchoring-end groups (hydroxamic or phosphonic) to provide firm bonding to iron atoms on the particle surface. Fe3O4 nanoparticles were also hydrophilized by encapsulation into a silica shell by reverse microemulsion method. Tetramethyl orthosilicate was used to prepare Fe3O4@SiO2 nanoparticles, which were...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.