National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
The cell cycle and differentiation of haematopoietic stem and progenitor cells.
Páral, Petr ; Šefc, Luděk (advisor) ; Horváthová, Monika (referee) ; Kokavec, Juraj (referee)
Haematopoietic stem and progenitor cells (HSPCs) are crucial for lifelong blood cell production. We analysed the cell cycle and cell production rate in HSPCs in murine haematopoiesis. The labelling of DNA-synthesizing cells by two thymidine analogues, optimized for in-vivo use, enabled the determination of the cell cycle flow rate into the G2-phase, the duration of the S-phase and the average cell cycle time in Sca-1+ and Sca-1- HSPCs. The determination of cells with 2n DNA content and labelled during the preceding S-phase was used to establish the cell flow rates in the G1-phase. Our measurements revealed a significant difference in how Sca-1+ and Sca-1- HSPCs self-renew and differentiate. The division of Sca-1+ progenitors led to the loss of the Sca-1 marker in about half of newly produced cells, corresponding to asymmetric cell division. In contrast both Sca-1- progenitors, arising from mitotic cell division, entered a new round of the cell cycle. This corresponds to symmetric self-renewing cell division. The novel data also enabled us to estimate the cell production rates in the Sca-1+ and in three subtypes of Sca-1- HSPCs. We focused on adult murine erythroid differentiation in the next part of our study. We introduced an original flow cytometry approach for identifying and studying erythroid...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.