National Repository of Grey Literature 3 records found  Search took 0.00 seconds. 
Numerical solution of ordinary differential equations
Monhartová, Petra ; Feistauer, Miloslav (advisor) ; Janovský, Vladimír (referee)
In the present work we study numerical methods for the nu- merical solution of initial value problems for ordinary differential equations. With the aid of the Taylor formula we derive several one-step methods. We compare numerical solution computed with explicit and implicit Eu- ler methods. Moreove, we are concerned with second-order and fourth-order Runge-Kutta methods. We find how accurately the numerical methods obta- ined with the aid of these methods approximate the exact solution. Further we estimate the error of these method by the half-step method. 1
ADER schemes for the shallow water equations
Monhartová, Petra ; Felcman, Jiří (advisor) ; Dolejší, Vít (referee)
In the present work we study the numerical solution of shallow water equations. We introduce a vectorial notation of equations laws of conservation from which we derive the shallow water equations (SWE). There is the simplify its derivation, notation and the most important features. The original contribution is to derive equations for shallow water without the using of Leibniz's formula. There we report the finite volume method with the numerical flow of Vijayasundaram type for SWE. We present a description of the linear reconstruction, quadratic reconstruction and ENO reconstruction and their using for increasing of order accuracy. We demonstrate using of linear reconstruction in finite volume method of second order accuracy. This method is programmed in Octave language and used for solving of two problems. We apply the method of the ADER type for the shallow water equations. This method was originally designed for the Euler's equation.
Numerical solution of ordinary differential equations
Monhartová, Petra ; Feistauer, Miloslav (advisor) ; Janovský, Vladimír (referee)
In the present work we study numerical methods for the nu- merical solution of initial value problems for ordinary differential equations. With the aid of the Taylor formula we derive several one-step methods. We compare numerical solution computed with explicit and implicit Eu- ler methods. Moreove, we are concerned with second-order and fourth-order Runge-Kutta methods. We find how accurately the numerical methods obta- ined with the aid of these methods approximate the exact solution. Further we estimate the error of these method by the half-step method. 1

See also: similar author names
2 Monhartová, Pavlína
Interested in being notified about new results for this query?
Subscribe to the RSS feed.