National Repository of Grey Literature 4 records found  Search took 0.00 seconds. 
Variable-shape E-beam litography: Proximity effect simulation of 3D micro and nano sructures
Matějka, Milan ; Urbánek, M. ; Kolařík, V. ; Horáček, M. ; Krátký, Stanislav ; Mikšík, P. ; Vašina, J.
A proximity effect simulation technique and developed resist profile simulation for variable-shaped e-beam lithography of three dimensional structures are presented. The e-beam lithography is a technology process which allows high resolution patterning. Most frequently it is used for microfabrication or nanofabrication of two dimensional relief structures such as resist photo masks, etching masks, diffraction gratings, micro and nano optics, photonics and more. However, in the case of the 3D structures patterning the precise thickness control of developed resist is required. With regard to subsequent proximity effect correction, the proximity effect simulation and developed resist profile simulation models are in the case of 3D structures fabrication critically important. We show the results from simulation of exposure and resist development process for the chosen polymer resist (PMMA), using the patterning and simulation e-beam lithography software.
Shaped E-beam nanopatterning with proximity effect correction
Urbánek, Michal ; Kolařík, Vladimír ; Matějka, Milan ; Matějka, František ; Bok, Jan ; Mikšík, P. ; Vašina, J.
Electron beam writer is a tool for writing patterns into a sensitive material (resist) in a high resolution. During the patterning, areas adjacent to the beam incidence point are exposed due to electron scattering effects in solid state (resist and the substrate). Consequently, this phenomenon, also called proximity effect, causes that the exposed pattern can be broader in comparison to the designed. In this contribution we present a software for proximity effect simulation and a software for proximity effect correction (PEC). The software is based on the model using the density of absorbed energy in resist layer and the model of resist development process. A simulation of proximity effect was carried out on binary lithography patterns, and consequently testing patterns were exposed with a corrected dose. As pattern generation, we used the e-beam writer TESLA BS 600 working with fixed energy 15keV and variable size rectangular shaped beam. The simulations of binary testing patterns and exposed patterns without PEC were compared. Finally, we compared the testing structures with PEC and without PEC, and we showed that the PEC tool works reliably for the e-beam writer BS 600.
Proximity effect simulation for variable shape e-beam writer
Kolařík, Vladimír ; Matějka, Milan ; Urbánek, Michal ; Král, Stanislav ; Krátký, Stanislav ; Mikšík, P. ; Vašina, J.
Electron Beam Writer (EBW) is a lithographic tool allowing generation of patterns in high resolution. The writing is carried out into a layer of a sensitive material (resist), which is deposited on the substrate surface (e.g. silicon). The resolution of the EBW is limited not only by the beam spot size, but also by the electron scattering effects (forward scattering, backscattering). Thus, even if the beam spot size on the resist surface is very small, due to electron scattering effect in the resist, the exposed area is significantly broader than the original beam spot size [1, 2].
Annual report, project MPO FR-TI1/574: Optimization of production flow in electron-beam lithography and mastering
Polívka, L. ; Kolařík, Vladimír ; Mikšík, P.
The e-beam writer BS600 is an electron-optical system with a shaped electron beam which was developed and optimized for production of relief microstructures with a sub-micron resolution. The goal of this project period is defined as follows: the extension of previously developed experimental exposure regime with a reduced stamp size should be extended to the production stage such that diffractive structures up to the size of 3 mm x 3 mm could be prepared. The goal was achieved; the results are summarized in this report.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.