National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Characterization of subunit A of the Eukaryotic translation initiation factor 3 in Arabidopsis thaliana
Raabe, Karel ; Michailidis, Christos (advisor) ; Retzer, Katarzyna (referee)
In plants, translation regulation plays an important role during progamic phase, fertilization and seed development. The process of translation is mostly regulated in its initiation phase, where Eukaryotic translation initiation factor 3 (eIF3) is the largest and most complex initiation factor, consisting of 12 different subunits. In plants, single eIF3 subunit mutants caused various growth and development defects, depending on the particular subunit that was mutated. However, not all the plant eIF3 subunits were characterized to this date. The objective of this work was to functionally characterize the eIF3 subunit A using Arabidopsis thaliana as the main model plant. We described in this work that plant eIF3A proteins share high levels of homology and domain organization with eIF3A subunits from non-plant eukaryotic species but contain regions specific only to plants. Next we described that Arabidopsis thaliana AteIF3A gene is transcribed in highly proliferating tissues, its protein product localizes to cytoplasm and around pollen vegetative cell nucleus and observed an increased frequency of defective pollen grains and defects in seed formation in plants with T-DNA insertion localized to the AteIF3A gene. We also produced stable transgenic Nicotiana tabacum lines expressing heterologous AteIF3A...
Eukaryotic translation initiation factor 3 and its role in plant translation regulation
Raabe, Karel ; Michailidis, Christos (advisor) ; Retzer, Katarzyna (referee)
After transcription, mRNA translation is another highly regulated process in gene expression. In plants, translation regulation plays an important role during progamic phase, fertilization and seed development, where synthesized transcripts are stored and selectively translated later in development. Translation regulation is also broadly used in stress responses as a fast and flexible tool to change gene expression; therefore, it plays an essential role in the survival strategy of sessile organisms like plants. Both regulation of the global translational rate as well as selective regulation of specific transcripts modulate the final gene expression response. Most of the regulatory mechanisms are concentrated in the stage of initiation, which is facilitated by several translation initiation factors. Eukaryotic translation initiation factor 3 (eIF3) is the largest and most complex of these factors, consisting of 12 conserved subunits. Its key function in the initiation is to scaffold the formation of the translation initiation complex and in the scanning mechanism accuracy. In past decades, additional eIF3 functions were discovered acting upon the whole translation cycle, including its importance in global and specific translation regulation. The aim of this work is to review eIF3 functions and to...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.