National Repository of Grey Literature 55 records found  1 - 10nextend  jump to record: Search took 0.01 seconds. 
Conductive open-cell silicone foam for modulatable damping and impact sensing applications
Preuer, R. ; Šleichrt, Jan ; Kytýř, Daniel ; Graz, I.
Nature has long served as a source of inspiration for the development of new materials, with foam-like structures in fruits such as oranges and pamelos serving as examples of efficient energy dissipation. In this study, we present the synthesis and characterization of a conductive silicone foam for potential impact sensing applications. By blending Sylgard 184 and Carbon Black, we create a highly porous structure capable of dissipating energy and modulating its resistance. To investigate the properties of the foam, we utilized both micro-computer tomography (μCT) and scanning electron microscopy (SEM) imaging techniques. The μCT imaging revealed the intricate pore network of the foam, reminiscent of the complex structure found in natural sponges. SEM imaging allowed for observation of the uniform distribution of Carbon Black particles within the foam, enabling the conductive properties of the foam. The foam’s mechanical behavior was characterized by a compression test under μCT imaging to measure the deformation behavior and changes in the foam’s resistance. Additionally, a ball drop test was conducted to investigate the foam’s damping behavior while simultaneously measuring the impact location by the local change in resistance. Remarkably, our results demonstrate the exceptional damping capabilities of the conductive silicone foam, with the damping ratio modulated by adjusting the degree of compression-induced deformation. This is attributed to the collapse of the foam’s porous structure, resulting in a significant increase in the foam’s contact area. Overall, our study provides valuable insights into the behavior of conductive silicone foams and their potential as an impact sensing material. The use of both CT and SEM imaging techniques allows for a comprehensive understanding of the foam’s properties, which can be optimized for a variety of applications. The foam’s ability to modulate its damping properties by adjusting the degree of deformation provides a promising avenue for future research in the field of materials science and engineering.
Laboratory X-ray imaging in material sciences
Koudelka_ml., Petr ; Kytýř, Daniel ; Jiroušek, O.
In recent decades, X-ray imaging and computed (micro)tomography (XCT) in particular have become common tools for volumetric inspection, visualization, and analysis of internal structure in materials from various fields [1]. In this lecture, we will explore various applications of laboratory X-ray imaging chains utilizing the combination of tomographical imaging with mechanical, thermal, or chemical loading of the irradiated sample in a so-called time-resolved imaging allowing for unprecedented insight into different phenomena driving fundamental processes encountered in various fields of material science. We will show that failure processes in engineering or geological materials [2] can be thoroughly studied by synergy of information from radiographical imaging and other methods including acoustic emission detection and optical measurements via high-speed visible-spectrum and thermal-imaging cameras, where the radiography provides important spatial information regarding deformation processes evolving within the tested samples that could not be obtained otherwise. The state-of-the-art the laboratory based imaging chains for investigation of dynamic response of materials under loading will be also discussed including high speed X-ray radiography utilizing a powerful X-ray source during high velocity impact as an approach suitable for inspection of an impacted sample. As an alternative to both conventional high-power sources and accelerator facilities, capabilities of a flash X-ray system developed primarily for in-situ ballistics research providing very short bursts of an extremely powerful intermittent X-ray radiation with a typical duration of dozens of nanoseconds will be shown.
Acta Polytechnica CTU Proceedings. Vol. 42 (2023)
Kytýř, Daniel ; Doktor, T. ; Zlámal, Petr
The YSESM symposium provides a forum for young researchers and engineers, PhD students and students dealing with subjects of experimental mechanics. The Symposium concentrates on current work in all areas of experimental research and its application in solid and fluid mechanics. The topic will particularly concern to: Conventional and Advanced Experimental Methods in Solid and Fluid Mechanics, Non-Destructive Testing and Inspection, Measurements in Material Science, Computer Assisted Testing and Simulation, Engineering Design Simulation, Hybrid Methods, Experimental Techniques – Numerical Simulation, Optical Methods and Image Processing, Measurements in Biomechanics, Sensor Techniques for Micro- and Nano-Applications, Measurement Methods for Forensic Engineering.
Computed tomography system with strict real-time synchronization for in-situ 3D analysis of periodically vibrating objects
Rada, Václav ; Fíla, Tomáš ; Zlámal, Petr ; Koudelka_ml., Petr ; Šleichrt, Jan ; Macháček, Michael ; Vavřík, Daniel ; Kytýř, Daniel
In the contribution, we present a laboratory system capable of X-ray computed tomography (XCT) scanning of an periodically moving or oscillating object. The system is an in-house developed XCT setup with electromagnetic voice coil actuator mounted on top of the rotary stage of the setup. The strict synchronization of the components, the rotary stage, the electromagnetic actuator movement and the detector readout is accomplished with use of the detector hardware trigger and hard real-time Linux operating system. Cylindrical sample manufactured from epoxy resin with metal particles to enable movement tracking is scanned in a stationary position and during periodical movement induced by the vibration stage. The volumetric data of the scans is compared and the results of this contribution represent an important step towards identification of defects through modal analysis of in-situ harmonically vibrating object.
Effect of the long-term storage methods on the stability of cartilage biomechanical parameters
Žaloudková, Blanka ; Sekorová, Š. ; Kopecká, B. ; Kytýř, Daniel
Long-term stability of the tissue product in terms of mechanical parameters is a key factor for its expiration date. For the investigation of storage effects on the cartilage tissues the experimental mechanical loading test combined with XCT scanning for the irregular shape inspection was performed. The samples were preserved according to three different protocols using the deep-freezing and two types of saline solution preservation. The stability of the biomechanical parameters was tested within annual intervals. All samples were subjected to uni-axial compression loading using the in-house developed compact table top loading device in displacement-driven mode. Based on the measurements, the results are represented in the form of stress-strain curves and quantified as elastic modulus and ultimate compression stress. It can be concluded that no significant difference was found in neither the mechanical properties of the samples nor in the effects of each preservational method.
Effect of aging on mechanical properties of 3D printed samples using stereolithography
Drechslerová, V. ; Falta, J. ; Fíla, T. ; Dvořák, R. ; Kytýř, Daniel
This paper focuses on stereolithography (an additive manufacturing technology working on the principle of curing liquid resins layer by layer using ultraviolet radiation) and the effect of aging on the mechanical properties of the material and printed samples. The aging of the material could be a problem for its subsequent use as the stability of the mechanical properties would not be maintained and unwanted deterioration of the material could occur. As part of the research, sets of samples were printed and subjected to different aging methods and subsequently subjected to quasi-static and dynamic uni-axial load tests. From the data obtained, the basic mechanical properties of the material were calculated and compared with each other. The aim of this paper was to investigate whether aging process causes significant changes in the mechanical properties of the materials used, which could have a consequential impact on their use in different industries.
Stereolithography for manufacturing of advanced porous solids
Drechslerová, V. ; Neuhäuserová, M. ; Falta, J. ; Šleichrt, J. ; Kytýř, Daniel
The aim of this paper is focused on benefits of stereolithography (SLA) technology for the fabrication of the lightweight lattice structures with potential for load-bearing function and high absorption of impact energy. SLA is an additive manufacturing technology employing the principle of liquid resins curing moderated by radiation of a wavelength from ultra-violet band where resulting material parameters are tunable by setting of the curing process. The batches of samples manufactured using three different resins were subjected to quasi-static uni-axial tensile and compression tests. Acquired data were processed to derive deformation behaviour expressed as stress-strain diagrams and fundamental material properties. Based on the knowledge obtained from the mechanical tests, the setup of the fabrication parameters, the most suitable resin for manufacturing of the lattice structures and the overall suitability of SLA technology for the fabrication of advanced porous materials, were determined.
Book of Abstracts. 18th Youth Symposium on Experimental Solid Mechanics
Kytýř, Daniel ; Doktor, Tomáš ; Zlámal, Petr
The YSESM symposium provides a forum for young researchers and engineers, PhD students and students dealing with subjects of experimental mechanics. The Symposium concentrates on current work in all areas of experimental research and its application in solid and fluid mechanics. The topic will particularly concern to: Conventional and Advanced Experimental Methods in Solid and Fluid Mechanics; Non-Destructive Testing and Inspection, Measurements in Material Science, Computer Assisted Testing and Simulation, Engineering Design Simulation, Hybrid Methods, Experimental Techniques – Numerical Simulation, Optical Methods and Image Processing, Measurements in Biomechanics, Sensor Techniques for Micro- and Nano-Applications, Measurement Methods for Forensic Engineering.
High strain-rate compressive testing of filling materials for inter-penetrating phase composites
Doktor, T. ; Fíla, T. ; Zlámal, Petr ; Kytýř, Daniel ; Jiroušek, O.
In this study behavior of the selected types of filling material for the inter-penetrating phase composites was tested in compressive loading mode at low and high strain-rates. Three types of the filling material were tested, (i) ordnance gelatin, (ii) low expansion polyurethane foam, and (iii) polyurethane putty. To evaluate their impact energy absorption bulk samples of the selected materials were tested in compression loading mode at strain-rates 1000 s−1 to 4000 s−1. The high strain-rate compressive loading was provided by Split Hopkinson Pressure Bar (SHPB) which was equipped with PMMA bars to enable testing of cellular materials with low mechanical impedance. Based on the comparative measurement response to compression at both low and high strain-rates was analysed. The results show a significant strain-rate sensitivity of the ordnance gelatin and of the polyurethane putty, while strain-rate effect in the polyurethane foam was not observed.
Book of abstracts. XVIIth Youth symposium on experimental solid mechanics
Kytýř, Daniel ; Doktor, Tomáš ; Zlámal, Petr
The YSESM symposium provides a forum for young researchers and engineers, PhD students and students dealing with subjects of experimental mechanics. The Symposium concentrates on current work in all areas of experimental research and its application in solid and fluid mechanics.

National Repository of Grey Literature : 55 records found   1 - 10nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.