National Repository of Grey Literature 18 records found  previous11 - 18  jump to record: Search took 0.00 seconds. 
Automatic hp-adaptivity on Meshes with Arbitrary-Level Hanging Nodes in 3D
Kůs, Pavel
The thesis is concerned with theoretical and practical aspects of the hp- adaptive finite element method for solving elliptic and electromagnetic prob- lems described by partial differential equations in three spatial dimensions. Besides the standard element refinements, the hp-adaptivity allows indepen- dent adaptation of degrees of the polynomial approximation as well. This leads to exponentially fast convergence even for problems with singularities. The efficiency of the hp-adaptivity is enhanced even more by the ability of the algorithm to work with meshes with arbitrary-level hanging nodes. This generality, however, leads to great complexity of the implementation. There- fore, the thesis concentrates on the mathematical analysis of algorithms that have led to successful implementation of the method. In addition, the the- sis discusses the numerical integration in 3D and the implementation of the method itself. Finally, numerical results obtained by this new implemen- tation are presented. They confirm advantages of hp-adaptivity on meshes with arbitrary-level hanging nodes. 1
Automatic hp-adaptivity on Meshes with Arbitrary-Level Hanging Nodes in 3D
Kůs, Pavel ; Vejchodský, Tomáš (advisor) ; Segeth, Karel (referee) ; Dolejší, Vít (referee)
The thesis is concerned with theoretical and practical aspects of the hp- adaptive finite element method for solving elliptic and electromagnetic prob- lems described by partial differential equations in three spatial dimensions. Besides the standard element refinements, the hp-adaptivity allows indepen- dent adaptation of degrees of the polynomial approximation as well. This leads to exponentially fast convergence even for problems with singularities. The efficiency of the hp-adaptivity is enhanced even more by the ability of the algorithm to work with meshes with arbitrary-level hanging nodes. This generality, however, leads to great complexity of the implementation. There- fore, the thesis concentrates on the mathematical analysis of algorithms that have led to successful implementation of the method. In addition, the the- sis discusses the numerical integration in 3D and the implementation of the method itself. Finally, numerical results obtained by this new implemen- tation are presented. They confirm advantages of hp-adaptivity on meshes with arbitrary-level hanging nodes. 1
Numerical solution of convection-diffusion equations with the aid of adaptive time-space higher order methods
Kůs, Pavel ; Felcman, Jiří (referee) ; Dolejší, Vít (advisor)
This thesis deals with solution of scalar nonlinear convection-diffusion equation with aid of discontinuous Galerkin method. It's aim is to implement an adaptive choice of time step. To do this, we derived 2 sufficiently stable methods for solution of systems of ordinary differential equations obtained by space semidicretization, which is carried out by the discontinuous Galerkin method. Using those two approximate solutions, we estimate local error of discretization. Using it, we are able to choose following time step in such way, that local error is approximately equal to given tolerance. Several numerical simulations were carried out to check properties of this method.
Convergence and stability of higher-order finite element solution of reaction-diffusion equation with Turing instability
Kůs, Pavel
In this contribution, higher-order finite element method is used for the solution of reaction-diffusion equation with Turing instability. Some aspects concerning convergence of the method for this particular problém are discussed. Our numerical tests confirm the convergence of the method, but for some very special choices of parameters, this convergence has very uncommon properties.
Solving Nonlinear Coupled Problems Using Agros2D
Kůs, Pavel ; Karban, P. ; Mach, F. ; Doležel, Ivo
The paper describes the environment of the Agros2D code and presents several nonlinear coupled problems solved numeri-cally in this environment.
Integration in higher-order finite element method in 3D
Kůs, Pavel
Integration of higher-order basis functions is an important issue, that is not as straightforward as it may seem. In traditional low-order FEM codes, the bulk of computational time is a solution of resulting system of linear equations. In the case of higher-order elements the situation is different. Especially in three dimensions the time of integration may represent significant part of the computation.
Řešení 3D elektrostatických problémů se singulaturou s použitím adaptivní hp-FEM
Kůs, Pavel ; Šolín, Pavel ; Doležel, Ivo
For most numerical methods, accurate resolution of singularities occurring at sharp re-entrant corners or edges of electrically conductive objects is highly problematic. Finite differences are known for their inability to treat complex geometries, and traditional low-order (piecewise-linear or quadratic) finite element methods (FEM) exhibit extremely poor convergence. Nowadays, the best numerical method for the solution of most singular problems is the adaptive hp-version of the FEM (hp-FEM). This method is based on spatial refinements toward the singularities combined with optimal variation of polynomial degrees on the elements. The hp-FEM has mathematically proven exponential convergence, and also in practical computations typically it is by several orders of magnitudes faster than standard FEM.

National Repository of Grey Literature : 18 records found   previous11 - 18  jump to record:
See also: similar author names
7 Kúš, Peter
2 Kůs, Petr
Interested in being notified about new results for this query?
Subscribe to the RSS feed.