National Repository of Grey Literature 55 records found  1 - 10nextend  jump to record: Search took 0.01 seconds. 
On the X-ray micro-tomography measurements of biological samples under compressive loading
Fíla, T. ; Kumpová, Ivana ; Zlámal, Petr ; Kytýř, Daniel ; Koudelka_ml., Petr ; Doktor, Tomáš ; Jiroušek, Ondřej
In this paper, compact loading device for micro-CT measurements under applied load was used in a series of instrumented compressive test of bone sample. Tested bone samples were loaded in several deformation steps and micro-CT scanning was carried out in each step. Reconstructed three-dimensional data of intact bone sample were used to develop 3D model of the specimen. Data from each deformation step were processed by DVC method for identification of displacement and strain fields and thus for evaluation of deformation response of human trabecular bone sample.
Experimental evaluation of strain fields in the vicinity of V-notch in ductile metal
Jandejsek, Ivan ; Jiroušek, Ondřej ; Vavřík, Daniel
This work deals with the experimental measurement of full-field displacements and strains evaluation on the surface of flat high-ductile aluminum specimens in the vicinity of the V-notch during loading. Two different specimen geometry configurations, boundary and middle notch, are tested and compared in terms of deformation constraint. The enhanced Digital Image Correlation method in conjunction with strain gage measurement is employed for the precise full-field strain evaluation.
Experimental study on size effect in quasi-static compressive behavior of closed-cell aluminium foams
Koudelka_ml., Petr ; Zlámal, Petr ; Kytýř, Daniel ; Fíla, Tomáš ; Jiroušek, Ondřej
The size effect in compressive deformation behaviour of commercially available aluminium closed-cell foam Alporas was studied under quasi-static loading conditions with different boundary conditions. Dimensions of the specimen’s cross-section were selected to match those of sufficient representative volume element (RVE) obtained by spectral analysis of the macroscopic structure whereas different heights of specimens were tested to examine size-scaling factor. Mechanical properties were derived from three different data sources: I) using data captured by load-cell, II) by digital image correlation (DIC) of displacement of contact faces, III) by DIC of the specimen’s structure. Mechanical testing was performed in custom-built loading device as well as in Instron 4301 electromechanical testing system with custom computer control software.
Comparative study on numerical and analytical assessment of elastic properties of metal foams
Koudelka_ml., Petr ; Jiroušek, Ondřej ; Doktor, Tomáš ; Zlámal, Petr ; Fíla, Tomáš
Recently, titanium metal foams are being considered as a suitable replacement for substituting trabecular bone microstructure especially for their similar pore distribution. The most common methods for determination of compressive effective elastic properties of such materials involve different approaches based on finite element analysis (FEA) of their microstructure. The internal geometry is usually modeled by two different methods - directly on the basis of a series of CT scans or using one of discretization schemes. However, all these techniques require highly specialized hardware, software and significant amount of computational time. In this paper, the effective elastic properties of the metal foam are instead obtained by analytical modulus-porosity relations and results are compared with previous FE based analysis.
Design and use of novel compression device for microtomography under applied load
Fíla, Tomáš ; Zlámal, Petr ; Koudelka_ml., Petr ; Jiroušek, Ondřej ; Doktor, Tomáš ; Kytýř, Daniel
This paper deals with modification and usage of custom-designed compression device, that allows real time X-ray tomography scanning of specimen under applied pressure. In this case microtomography is used to obtain data required to determine specimens morphology and to develop 3D material model (especially for cellular materials such as bones, metal foams and quasi-brittle materials or particle composites such as concrete or cementitious composites). Important design changes were made in the existing device frame to increase its load capabilities, stiffness and to accomodate a larger specimen. Finally device displacement measurements were conducted and calibration experiment was carried out.
Identification of elasto-visco-plastic constitutive material model with damage for porous material based on the indirect finite element simulation of the nanoindentation test
Zlamal, P. ; Jiroušek, Ondřej ; Králík, V.
The aim of this study is to determine elasto-visco-plastic material model with damage for two basic structure elements of diferent porous materials: (i) human single trabecula and (ii) wall of Alporas metal foam. Indirect identification of constants of the material model is based on the numerical simulations of the nanoindentation test using custom-built optimization algorithm. During the optimization procedure the numerical results are fitted to the experimentally obtained nanoindentation curves and the best set of the constants is determined using the least squares method. For evaluation of the influence of the individual material constants a sensitivity study is performed.
Experimental measurement of full-field strains in the vicinity of U-notch in ductile material
Jandejsek, Ivan ; Jiroušek, Ondřej ; Vavřík, Daniel
The paper deals with the measurement of full-field displacements and strains evolution in the vicinity of the U-notch in the flat high-ductile aluminum specimen during its loading. The full-field displacements are measured using Digital Image Correlation method in a set of vertices of a triangular mesh reflecting the presence of the stress concentrator. From the known displacements strain distribution is computed. The resulting strain field is compared with simultaneous strain gauge measurement. These strain gauges are located just in a few well-defined positions and serve for correction of a systematical error caused by rigid-body motion of the specimen during loading. The experimental results are used as referential for Finite Element simulation using the same triangular mesh.
Experimental Methods and Numerical Simulation in Engineering Sciences, Proceedings of XIIIth Bilateral Czech/German Symposium
Jiroušek, Ondřej ; Kytýř, D.
These proceedings contain the invited talks and contributed articles of the XIIIth Bilateral Czech/German Symposium held in Telc, Czech Republic. The symposium is focused on experimental methods and numerical simulation in engineering sciences. The proceedings capture the trends in development of experimental methods in mechanics of structures and materials (regardless to the material and structure type, covering fields from civil and mechanical engineering to biomechanics) as well as deployment of particular solution for measurement and automation systems for evaluation of experimental data.
On the reliability of microstructural models of trabecular bone with tissue properties from nanoindentation for bone quality assessment
Jiroušek, Ondřej ; Zlámal, Petr
Material properties of trabecular bone can be inversely determined by microstructural finite element (FE) models. The geometry of these models is developed using three-dimensional image data from microfocus Computed Tomography (micro-CT). The reliability of these models to predict the overall elastic properties is influenced by several factor, namely the tissue material properties, resolution of the input images, quality of the segmentation and quality of the FE mesh. This article describes all the aspects of proper and reliable inverse estimation of bone quality using the microstructural models with tissue properties assessed by nanoindentation.
Indirect determination of material model parameters for single trabecula based on nanoindentation and three-point bending test
Zlámal, P. ; Jiroušek, Ondřej ; Kytýř, Daniel ; Doktor, Tomáš
The aim of the paper is to develop a procedure for determination of elasto-visco-plastic constitutive model with damage for human single trabecula. The procedure is suited for indirect establishing of material model based on nanoindentation and three-point bending test. Constants of the material model are identified by Finite Element (FE) simulations and curve fitting using an algorithm based on least squares fitting of the experimental curves. In the case of nanoindentation, the penetration depth of tip during the FE analyses (FEA) is fitted to experimental nanoindentation curves. In the case of three-point bending, displacements of nodes are compared with displacements of markers observed during the experiment using digital image correlation.

National Repository of Grey Literature : 55 records found   1 - 10nextend  jump to record:
See also: similar author names
1 Jiroušek, O.
Interested in being notified about new results for this query?
Subscribe to the RSS feed.