National Repository of Grey Literature 4 records found  Search took 0.00 seconds. 
Design of the atomic source producing carbon beams for deposition of graphene in UHV conditions
Horáček, Matěj ; Kolíbal, Miroslav (referee) ; Mach, Jindřich (advisor)
This bachelor's thesis deals with the design of the atomic source of carbon beams for deposition of graphene in UHV conditions. In the first part, problems on the growth of ultrathin layers, the theory of atomic beams and molecular beam epitaxy are described. The second part is aimed to graphene layers - especially the growth of graphene using molecular beam epitaxy. In the third part, the detection of carbon atomic beams is discussed. The practical part of this bachelor's thesis deals with the design and the construction of high-temperature atomic source of carbon. In the conclusion the obtained results are discussed.
Graphene photodetector based on plasmonic effects
Horáček, Matěj ; Hájková,, Zdenka (referee) ; Šikola, Tomáš (advisor)
Two rich and vibrant fields of investigation - graphene and plasmonics - strongly overlap in this work, giving rise to a novel hybrid photodetection device. The intrinsic photoresponse of graphene is significantly enhanced by placing the gold nanorods exhibiting unique anisotropic localized surface plasmon resonances on the graphene surface. The reported enhanced photoresponse of graphene is caused by the redistribution of localized surface plasmons in the nanoparticles into graphene. The exact underlying energy redistribution mechanism is thoroughly studied by a single particle scattering spectroscopy monitoring the particle plasmon linewidth as a function of the number of underlaying graphene layers. The obtained extraordinary plasmon broadening for nanoparticles placed on graphene suggests the contribution of a novel energy redistribution channel attributed to the injection of hot electrons from gold nanorods into graphene.
Graphene photodetector based on plasmonic effects
Horáček, Matěj ; Hájková,, Zdenka (referee) ; Šikola, Tomáš (advisor)
Two rich and vibrant fields of investigation - graphene and plasmonics - strongly overlap in this work, giving rise to a novel hybrid photodetection device. The intrinsic photoresponse of graphene is significantly enhanced by placing the gold nanorods exhibiting unique anisotropic localized surface plasmon resonances on the graphene surface. The reported enhanced photoresponse of graphene is caused by the redistribution of localized surface plasmons in the nanoparticles into graphene. The exact underlying energy redistribution mechanism is thoroughly studied by a single particle scattering spectroscopy monitoring the particle plasmon linewidth as a function of the number of underlaying graphene layers. The obtained extraordinary plasmon broadening for nanoparticles placed on graphene suggests the contribution of a novel energy redistribution channel attributed to the injection of hot electrons from gold nanorods into graphene.
Design of the atomic source producing carbon beams for deposition of graphene in UHV conditions
Horáček, Matěj ; Kolíbal, Miroslav (referee) ; Mach, Jindřich (advisor)
This bachelor's thesis deals with the design of the atomic source of carbon beams for deposition of graphene in UHV conditions. In the first part, problems on the growth of ultrathin layers, the theory of atomic beams and molecular beam epitaxy are described. The second part is aimed to graphene layers - especially the growth of graphene using molecular beam epitaxy. In the third part, the detection of carbon atomic beams is discussed. The practical part of this bachelor's thesis deals with the design and the construction of high-temperature atomic source of carbon. In the conclusion the obtained results are discussed.

See also: similar author names
3 Horáček, Marek
8 Horáček, Martin
17 Horáček, Michal
3 Horáček, Miloslav
45 Horáček, Miroslav
Interested in being notified about new results for this query?
Subscribe to the RSS feed.