National Repository of Grey Literature 1 records found  Search took 0.00 seconds. 
Theoretical Study of Non-covalent Interaction from small molecules to Biomolecules
Haldar, Susanta ; Hobza, Pavel (advisor) ; Havlas, Zdeněk (referee) ; Jurečka, Petr (referee)
xv Abstract The aim of this thesis is to investigate the accurate stabilization energy and binding free energy in various non-covalent complexes spanned from small organic molecules to biomolecules. Non-covalent interactions such as H-bonds, π...π stacking and halogen bonds are mainly responsible for understanding of most biological processes, such as small molecule interactions with surface, protein-ligand binding in the cell machinery, etc. In the thesis, different non-covalent complexes such as graphene…electron donor- acceptor complexes, DNA base pair interaction with silica surface, etc, were investigated. The reference stabilization energies were calculated at ab initio level, e.g., CCSD(T)/CBS method wherever possible. On the other hand, more approximated scaled MP2 method (MP2.5/CBS/6-31G*(0.25)) is taken as reference instead of CCSD(T)/CBS due to the size of the complexes. Further, the DFT and MM energies were also tested towards the reference one. The knowledge of non- covalent interaction is required for rationalizing of any association processes in nature which requires accurate description of the free energy change. The state-of- the-art molecular dynamics simulation in full atomic scale and biased metadynamics free energy method is used for binding free energy calculations. The well tempered...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.