National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Neuroregeneration after spinal cord injury and in amyotrophic lateral sclerosis -possibilities for stem cell therapy
Forostyak, Serhiy ; Syková, Eva (advisor) ; Rokyta, Richard (referee) ; Mazanec, Radim (referee)
Adipose-derived MSC could be used as an alternative for bone marrow MSC in the treatment of acute SCI. We used the intraspinal grafting of rat adipose-derived naïve and predifferentiated MSC to improve motor function after a balloon-induced compression lesion of the rat spinal cord. Grafted cells survived for seven weeks after transplantation, improved motor activity and integrated into the host tissue. They expressed the oligodenrocyte precursor marker NG2 and, occasionally, the astrocytic marker GFAP, but did not transdifferentiate into a neuronal phenotype. Bone marrow MSC may change the disease course and extend lifespan in a rat model of ALS. Combined intraspinal and intravenous transplantation of rat BMSC was performed in symptomatic rats overexpressing the SOD1 G93A gene. Cell-treated animals lived longer compared with sham-treated rats and displayed significantly improved motor activity and grip strength. Rat BMSC survived until the end stage of the disease and were migrating along the white matter of the spinal cord. Grafted cells increased the number of host cells displaying positive staining for neurofilaments and significantly increased the number and also the size of the remaining spinal motoneurons 10-11 weeks after delivery, compared with vehicle-injection. The defragmentation of DNA, a sign...
Neuroregeneration after spinal cord injury and in amyotrophic lateral sclerosis -possibilities for stem cell therapy
Forostyak, Serhiy ; Syková, Eva (advisor) ; Rokyta, Richard (referee) ; Mazanec, Radim (referee)
Adipose-derived MSC could be used as an alternative for bone marrow MSC in the treatment of acute SCI. We used the intraspinal grafting of rat adipose-derived naïve and predifferentiated MSC to improve motor function after a balloon-induced compression lesion of the rat spinal cord. Grafted cells survived for seven weeks after transplantation, improved motor activity and integrated into the host tissue. They expressed the oligodenrocyte precursor marker NG2 and, occasionally, the astrocytic marker GFAP, but did not transdifferentiate into a neuronal phenotype. Bone marrow MSC may change the disease course and extend lifespan in a rat model of ALS. Combined intraspinal and intravenous transplantation of rat BMSC was performed in symptomatic rats overexpressing the SOD1 G93A gene. Cell-treated animals lived longer compared with sham-treated rats and displayed significantly improved motor activity and grip strength. Rat BMSC survived until the end stage of the disease and were migrating along the white matter of the spinal cord. Grafted cells increased the number of host cells displaying positive staining for neurofilaments and significantly increased the number and also the size of the remaining spinal motoneurons 10-11 weeks after delivery, compared with vehicle-injection. The defragmentation of DNA, a sign...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.