National Repository of Grey Literature 67 records found  beginprevious34 - 43nextend  jump to record: Search took 0.01 seconds. 
The effect of the canonical Wnt singalling pathway on the differentiation of polydendrocytes after ischemic brain injury
Knotek, Tomáš ; Anděrová, Miroslava (advisor) ; Romanyuk, Natalyia (referee)
Polydendrocytes, or NG2 glia, are fourth type of glial cells in mammal central nervous system. In the adult brain, NG2 glia represent important cell type with respect to their role in gliogenesis and nervous tissue regeneration following injury. Ligands from the Wingless/Int (Wnt) family play key role in proliferation and differentiation of NG2 glia and they can also influence regeneration of nervous tissue after ischemia. The aim of this thesis was to elucidate the role of NG2 glia in neurogenesis and gliogenesis following ischemic brain injury and investigate the impact of Wnt signalling on the reaction of NG2 glia to this type of injury. To fulfil these aims, transgenic mouse strains with tamoxifen-inducible recombination, that enabled simultaneous expression of red fluorescent dye and either activation or inhibition of the Wnt signalling pathway in NG2 glia, were employed. To induce ischemic injury, middle cerebral artery occlusion model was used. Changes in differentiation and electrophysiological properties of NG2 glia were analysed using patch-clamp technique. Activation of the Wnt signalling pathway under physiological conditions and 7 days after ischemic injury led to increased differentiation of NG2 glia toward astrocytes, while 3 days after ischemic injury activation of this signalling...
Proteomic analysis of cellular proliferation and differenziation: Model of neural stem cells and cancer cells
Skalníková, Helena ; Kovářová, Hana (advisor) ; Anděrová, Miroslava (referee) ; Bezouška, Karel (referee)
CoNcLUsIoNs In protein profiling of neural stem cells using 2-dimensional gel electrophoresis and mass spectrometry, constitutively expressed proteins in 66 protein spots were identified. Most of the individual protein species were related to RNA and protein metabolism, processing and turnover, including some chaperones and stress response proteins. Proteins involved in cellular organization (e.g. cýoskeletal proteins and annexins), metabolic proteins (mostly enrymes),cellular energetics,cell defenseand signallingfollowed in lower numbers. Proteins in 16 spots significantly regulated during neural differentiation were identified. Induction of levels of o-B crystallin, hnRNP Al and hnRNP AZIBI during differentiation and protein localization within neural cells were studied by westernblottingand immunocýochemistry. Using antibody microarrays, in neural stem cells an increase in GRK2 level and phosphorylationsof signalling molecules(CDKI|Z, PKC mu, PKCy, Erk5 and o-B crystallin) involved mostly in cellular proliferation were detected.On the contrary, in differentiatedneural cells levels of protein-phosphatase4, heme-oxygenase2, MEK3, RafB, pro-caspase 1 and phosphorylation of 40 kDa proline-rich Akt substratewere induced. In cancer cells after protein separationby ProteomelabrM PF 2D system, 8 proteins...
The role of astrocytes in the formation of brain edema
Heřmanová, Zuzana ; Anděrová, Miroslava (advisor) ; Pačesová, Dominika (referee)
Brain edema is a cause of mortality accompanying number of pathologies such as ischemia, traumatic brain injury, tumors or liver and kidney failure. It is described as a process of osmotic and water flux alterations, which lead to cell volume changes and to an increase in intracranial pressure. Brain edema is usually classified into two types: vasogenic and cytotoxic. Development of vasogenic edema is connected to the blood brain barrier disruption. Water accumulates in the extracellular space and exerts pressure on the cellular compartments of the tissue. The cytotoxic type of edema is characterized by water accumulation within the cells. The process of cellular volume enlargement is termed cellular swelling. Cytotoxic swelling is usually connected to glial cells, namely astrocytes, as these cells represent a part of the blood brain barrier and thus they influence homeostasis inside the brain. Water flows across cytoplasmic membrane through a system of specialized channels - aquaporins. For the brain edema formation, aquaporin 4 is the most important. It is localized on astrocytic membranes and using aquaporin-null mice, it has been shown, that it participates in water clearance in physiological and pathological conditions. Since the water fluxes are passive, the driving force for edema formation...
Glutamate receptors in NG2-glial cells: gene profiling and functional changes after ischemic brain injury
Waloschková, Eliška ; Anděrová, Miroslava (advisor) ; Růžička, Jiří (referee)
Glutamate is the main excitatory neurotransmitter in the mammalian brain and its transmission is responsible for higher brain functions, such as learning, memory and cognition. Glutamate action is mediated by a variety of glutamate receptors, though their properties were until now studied predominantly in neurons. Glutamate receptors are expressed also in NG2-glia, however their role under physiological conditions as well as in pathological states of the central nervous system is not fully understood. The aim of this work is to elucidate the presence, composition and function of these receptors in NG2-glia under physiological conditions and following focal cerebral ischemia. For this purpose we used transgenic mice, in which NG2-glia are labeled by a fluorescent protein for their precise identification. To analyze the expression pattern of glutamate receptors in NG2-glia we employed single-cell RT-qPCR. Furthermore, we used calcium imaging to characterize their functional properties.
Calcium signalling in astrocytes under physiological and pathological conditions
Svatoňová, Petra ; Anděrová, Miroslava (advisor) ; Kolář, David (referee)
Calcium signalling in astrocytes represents an important component, which enables proper neuronal functioning under physiological conditions. Alterations in Ca2+ signalling, accompanied by an increase in intracellular calcium levels is a hallmark for numerous pathological states of central nervous system, such as traumatic and ischemic brain/spinal cord injuries, epilepsy as well as neurodegenerative diseases, such as Alzheimer's disease and psychiatric disorders, such as schizophrenia. The research analyzing the molecular components of astrocytic Ca2+ signalling can help us understand the control mechanisms used in calcium signalling and thus be greatly beneficial for further therapeutic research. Powered by TCPDF (www.tcpdf.org)
Proliferation and differentiation of NG2-glia following ischemic brain injuries
Kirdajová, Denisa ; Anděrová, Miroslava (advisor) ; Machová Urdzíková, Lucia (referee)
NG2-glia, a fourth major glial cell population, were shown to posses wide proliferation and differentiation potential in vitro and in vivo, therefore the aim of this study was to compare the rate of proliferation and differentiation potential of NG2-glia after different types of brain injuries, such as global and focal cerebral ischemia (GCI, FCI) or stab wound (SW), as well as during aging. Moreover, we aimed to determine the role of Sonic hedgehog (Shh) in NG2-glia proliferation/differentiation after FCI. We used transgenic mice, in which tamoxifen triggers the expression of red fluorescent protein (tdTomato) in NG2-glia and cells derived therefrom. Proliferation and differentiation potential of tdTomato+ cells in sham operated animals (controls) and those after injury were determined by immunohistochemistry employing antibodies against proliferating cell nuclear antigen and glial fibrillary acidic protein. FCI was induced by middle cerebral artery occlusion, GCI by carotid occlusion with hypotension and SW by sagittal cortical cut. Shh signaling in vivo was activated or inhibited by Smoothened agonist or Cyclopamine, respectively. Compared to controls, the proliferation rate of tdTomato+ cells was increased after all types of injuries, while it declined in aged mice (15-18- months-old) after...
The role of the Wnt signalling pathway in proliferation and differentiation of neural stem cells in the neonatal and adult mouse brain
Koleničová, Denisa ; Anděrová, Miroslava (advisor) ; Janečková, Lucie (referee)
The canonical Wnt/β-catenin signalling pathway plays an important role in proliferation and differentiation of neural progenitors during embryogenesis as well as postnatally. In the present study, the effect of the Wnt signalling pathway on the differentiation potential of neonatal and adult neural stem cells (NS/PCs) isolated from subventricular zone (SVZ) of lateral ventricles and their membrane properties were studied eight days after the onset of in vitro differentiation. To manipulate Wnt signalling at different cellular levels, three transgenic mouse strains were used, which enabled inhibition or activation of the pathway using the Cre- loxP system. We showed that the activation of the Wnt signalling pathway leads to higher expression of β-catenin in both postnatal as well as adult NS/PCs, while Wnt signalling inhibition results in the opposite effect. To follow the fate of NS/PCs, the patch-clamp technique, immunocytochemistry, and Western blot were employed. After eight days of NS/PCs differentiation we identified three electrophysiologically and immunocytochemically distinct cell types of which incidence was significantly affected by the canonical Wnt signalling pathway, only in differentiated neonatal NS/PCs. Activation of this pathway suppressed gliogenesis, and promoted neurogenesis,...
Membrane properties of NG2 glia in CNS
Knotek, Tomáš ; Anděrová, Miroslava (advisor) ; Hrčka Krausová, Barbora (referee)
NG2 glia represent a new type of glial cells in central nervous system, which does not belong to astrocytes, oligodendrocyte or microglia. and their most frequent marker is chondroitine sulphate proteoglycan NG2. These cells keep their proliferation ability in adult brain and it is generally accepted that they can differentiate into oligodendrocytes. This thesis summarize the current knowledge about membrane properties of NG2 glia, namely expression of numerous types of ion channels and ionotropic and metabotropic receptor on their membrane. NG2 glia express outwardly and inwardly rectifying K+ channels, Ca2+ activated K+ channels and two-pore domain K+ channels. Interestingly, they also express voltage gated Na+ channels, L, T, P/Q and N type Ca2+ channels and voltage gated Cl- channels. Furthermore, nonspecific cationic channels, such as HCN and TRP, were identified in NG2 glia and they express Na+ /Ca2+ exchanger at high level. There are also ionotropic and metabotropic glutamate and GABA receptors on NG2 glia membrane, together with nicotinic and muscarinic receptors, adrenergic and glycine receptors, metabotropic and ionotropic purinergic receptors, receptors for serotonine, dopamine and histamine. Ion channels and receptors in NG2 glia play an important role in their proliferation,...
Differentiation potential of polydendrocytes in pathological states of central nervous system
Pavlištová, Tereza ; Anděrová, Miroslava (advisor) ; Smejkalová, Terézia (referee)
NG2 cells also called polydendrocytes or oligodendrocyte progenitors comprise fourth type of glial cells in the brain. Ng2 glia express distinct markers on their cell surface, which can be used for their identification. Particularly, NG2 proteoglycan chondroitin sulphate and receptors for platelet-derived growth factor belong to the main markers. Polydendrocytes arise in two canals of spinal cord and also in the ventral part of frontal brain, telencephalon and diencephalon. Population of NG2 cells is heterogeneous because they differ morphologically, by their electrophysiological properties and distinct differentiation potential depending on localization in brain. In conditions in vitro, polydendrocytes can differentiate into oligodendrocytes, protoplasmic astrocytes or neurons. In early postnatal brain, NG2 glia give rise to astrocytes, but most of these cells remain in the mature state or change themselves to oligodendrocytes. Pathological states of the central nervous system cause an activation of polydendrocytes, they start to be hypertrophied and increase expression of NG2 proteoglycan. Reaction of these cells is influenced by environment and chemical factors, for example growth factors, morphogens and cytokines. Depending on the type of CNS disorder the differentiation potential of NG2 glia...

National Repository of Grey Literature : 67 records found   beginprevious34 - 43nextend  jump to record:
See also: similar author names
3 Anderová, Michaela
Interested in being notified about new results for this query?
Subscribe to the RSS feed.