National Repository of Grey Literature 3 records found  Search took 0.00 seconds. 
Low cycle fatigue behaviour and fatigue crack initiation in MAR-M247 at 700 °c
Šulák, Ivo ; Obrtlík, Karel ; Hrbáček, K.
The second generation nickel-based superalloy MAR-M247 offersa satisfying combination of fatigue and creep properties and oxidation and corrosion resistance that arerequired for application at elevated temperatures in hostile environments. The microstructure consists mainly oftheface centred cubic γ matrix and ordered γ ́ strengthening precipitates (L12crystal structure). The present work focuses on low cycle fatigue (LCF) behaviour of polycrystalline nickel-based superalloy MAR-M247 at high temperature. LCF tests were conducted on cylindrical specimens in symmetrical push-pull cycle under strain control with constant total strain amplitude and strain rate at 700 °C in ambientair. Cyclic stress-strain curvesand fatigue life curves in the representation ofplastic strain amplitude vs. stress amplitude andstress amplitude vs. the number of cycles to failure, respectively,were plotted and compared with data obtained on Inconel 713LC. Special attention waspaid to the investigation of crack initiation in MAR-M247 during low cycle fatigue. Crack initiation sites were studied by means of scanning electron microscopy (SEM) in dual beam microscope TESCAN LYRA 3 XMU FESEM equipped with focus ion beam (FIB). Specimens’ surface observations revealed the formation of pronounced surface relief indicating localisation of plastic deformation.Observations in transmission electron microscope (TEM)confirmed localisation of cyclic plastic deformation in persistent slip bands along {111} slip planes. Fractographic analysis revealed fatigue crack initiation sites. Fatigue crack propagation in stage I was typical of smooth facets up to 500 μm long.
LOW CYCLE FATIGUE BEHAVIOR AND FATIGUE CRACK INITIATION IN MAR-M247 AT 700 °C
Šulák, Ivo ; Obrtlík, Karel ; Hrbáček, K.
The second generation nickel-based superalloy MAR-M247 offers a satisfying combination of fatigue and creep properties and oxidation and corrosion resistance that are required for application at elevated temperatures in hostile environments. The microstructure consists mainly of the face centred cubic γ matrix and ordered γ´ strengthening precipitates (L12 crystal structure). The present work focuses on low cycle fatigue (LCF) behaviour of polycrystalline nickel-based superalloy MAR-M247 at high temperature. LCF tests were conducted on cylindrical specimens in a symmetrical push-pull cycle under strain control with constant total strain amplitude and strain rate at 700 °C in ambient air. Cyclic stress-strain curves and fatigue life curves in the representation of plastic strain amplitude vs. stress amplitude and stress amplitude vs. the number of cycles to failure, respectively, were plotted and compared with data obtained on Inconel 713LC. Special attention was paid to the investigation of crack initiation in MAR-M247 during low cycle fatigue. Crack initiation sites were studied by means of scanning electron microscopy (SEM) in dual beam microscope TESCAN LYRA 3 XMU FESEM equipped with focus ion beam (FIB). Specimens’ surface observations revealed the formation of pronounced surface relief indicating localisation of plastic deformation. Observations in transmission electron microscope (TEM) confirmed localisation of cyclic plastic deformation in persistent slip bands along {111} slip planes. Fractographic analysis revealed fatigue crack initiation sites. Fatigue crack propagation in stage I was typical of smooth facets up to 500 μm long.
Interaction of Creep and High Cycle Fatigue of IN 713LC Superalloy
Horník, V. ; Šmíd, Miroslav ; Hutař, Pavel ; Kunz, Ludvík ; Hrbáček, K.
The study deals with the interaction of creep and high cycle fatigue of cast polycrystalline nickel-based superalloy IN 713LC at high temperatures. Previous works indicated that creep lifetime of superalloy structures was un-affected or even slightly increased in the cases with superimposed vibrations. The reason for this behaviour was not well described up to now. Therefore, set of fatigue tests was conducted at high mean stresses level to observe this phenomenon. The mean stress was kept constant while the stress amplitudes were selected in order to measure wide range of conditions from pure creep to pure fatigue. Fractographic analysis by scanning electron microscopy (SEM) was done with the aim to identify governing damage mechanisms for particular test conditions as a preliminary evaluation of conducted tests.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.