National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Quantum-mechanical study of magnetic properties of superalloy nanocomposite phase Fe2AlTi
Slávik, Anton ; Miháliková, Ivana ; Friák, Martin ; Všianská, Monika ; Šob, Mojmír
The L21-structure Fe2AlTi intermetallic compound is one of the two phases identified in Fe-Al-Ti superalloy nanocomposites. Experimental data related to low-temperature magnetic properties of this Heusler compound indicate that magnetic moment is about 0.1 Bohr magneton per formula unit. In contrast, previous quantum-mechanical calculations predicted Fe2AlTi to have much higher magnetic moment, 0.9 Bohr magneton per formula unit. In order to solve this discrepancy between the theory and experiment we have performed a series of quantum-mechanical fix-spin-moment calculations and compared our results with those for non-magnetic state. It turns out that the total energy of the non-magnetic state is only by 10.73 meV/atom higher than that of the magnetic state. When applying Boltzmann statistics to this very small energy difference we predict that the non-magnetic state appears at non-zero temperatures with significant probabilities (for instance, 22.36 % at T = 100 K) and reduces the overall magnetic moment. As another mechanism lowering the magnetization we studied selected shape deformations, in particular trigonal shearing. Fe2AlTi exhibits a compression-tension asymmetry with respect to these strains and, for example, the strain 0.08 destabilizes the spin-polarized state, leaving the non-magnetic state as the only stable one.
Theory-guided design of novel Fe-Al-based superalloys
Friák, Martin ; Holec, D. ; Jirásková, Yvonna ; Palm, M. ; Stein, F. ; Janičkovič, D. ; Pizúrová, Naděžda ; Dymáček, Petr ; Dobeš, Ferdinand ; Šesták, Pavel ; Fikar, Jan ; Šremr, Jiří ; Nechvátal, Luděk ; Oweisová, S. ; Homola, V. ; Titov, Andrii ; Slávik, Ondrej ; Miháliková, Ivana ; Pavlů, Jana ; Buršíková, V. ; Neugebauer, J. ; Boutur, D. ; Lapusta, Y. ; Šob, Mojmír
Our modern industrialized society increasingly requires new structural materials\nfor high-temperature applications in automotive and energy-producing industrial\nsectors. Iron-aluminides are known to possess excellent oxidation and sulfidation\nresistance as well as sufficient strength at elevated temperatures. New Fe-Al-based\nmaterials will have to meet multiple casting, processing and operational criteria\nincluding high-temperature creep strength, oxidation resistance and room-temperature\nductility. Such desirable combination of materials properties can be achieved in multi-phase\nmulti-component superalloys with a specific type of microstructure (the matrix contains\ncoherent particles of a secondary phase - a superalloy microstructure). In order to design\nnew Fe-Al-based superalloys, we employ a state-ofthe-art theory-guided materials design\nconcept to identify suitable combinations of solutes.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.