National Repository of Grey Literature 15 records found  1 - 10next  jump to record: Search took 0.01 seconds. 
INFLUENCE OF THE DEPOSITION PARAMETERS ON MICROSTRUCTURE AND PROPERTIES OF HVOF SPRAYED WC-CRC-NI COATING
Vražina, Tomáš ; Šulák, Ivo ; Poloprudský, Jakub ; Zábranský, K. ; Gejdoš, P. ; Hadraba, Hynek ; Čelko, L.
This paper investigates the influence of thermal spray parameters of the high-velocity oxygen fuel (HVOF) process on the properties of cermet coatings prepared from commercially available Amperit 551 WC-CrC-Ni powder. Three different processing parameters were applied to optimize the production process with the aim to achieve preeminent mechanical properties and fully dense material without microstructural defects. The deposition was carried out by a GLC5 gun. The velocity and temperature of powder particles in the spray stream were monitored by Accuraspray Tecnar diagnostic tool. The quality of deposited coatings was analyzed by means of light microscopy, scanning electron microscopy, and X-ray diffraction. The chemical composition of the used powder and sprayed WC-CrC-Ni coating was determined by energy dispersive spectroscopy. It was found that the spray parameters have a negligible effect on the resulting microstructure and phase composition of the coating. However, the porosity and surface roughness were significantly affected by the variation in process parameters. To assess the basic mechanical properties of HVOF sprayed coating instrumented Vickers hardness measurements were utilized. The coating hardness reached mean values over 1400 HV 0.1 and the indentation modulus varied from 152-279 GPa.
Cyclic plasticity and low-cycle fatigue resistance of materials prepared by the ColdSpray method
Brůža, Jaromír ; Šulák, Ivo (referee) ; Zapletal, Josef (advisor)
In the theoretical part, the diploma thesis focuses on Cold spray technology and parameters affecting the efficiency and quality of deposition. Next, there is an introduction to the fatigue process of materials. The theory is concluded with a summary of the current knowledge regarding materials created by Cold spray technology in the field of fatigue. In the practical part, volumetric bodies were created from the material EN AW7075. Specimens for tensile and fatigue tests were cut from the bodies by electrosparking. From the material and powder, metallographic cuttings were created for the determination of porosity using Archimedes’ principle, hardness according to Vickers and evaluation of EDS and EBSD analysis. The basic mechanical properties were determined from the tensile tests and the Wöhler-Basquin parameters were determined from the fatigue tests along with the life curve. Subsequently, a fractographic analysis of fracture surfaces using SEM took place.
The role of thermal spray parameters on structure and properties of cermet coatings
Vražina, Tomáš ; Čelko,, Ladislav (referee) ; Šulák, Ivo (advisor)
The diploma thesis investigates the influence of thermal spray process parameters on the properties of composite coatings, specifically WC-CrC-Ni and WC-Co-Cr coatings deposed onto an austenitic steel substrate. The main objectives were characterization of sprayed deposition and creation of process maps. The theoretical part included the most important details about the manufacturing process, properties, consolidation and application of cermet materials. The methodical part is devoted to a description of analytical methods and devices used for the characterization of coatings microstructure and its mechanical properties. The practical part provides information acquired from analytical devices. It contains details about surface roughness, hardness, porosity, indentation modulus, corrosion potential and corrosion current density. The chemical composition of coatings and powder mixtures was analyzed by energy dispersive spectroscopy (EDS). For more accurate determination of developed phases X-ray diffraction was used. During the coatings characterization various procedures were developed. It is expected that these procedures would be implemented in another optimization of spraying conditions. Results obtained in the practical part were discussed in discussion and compared with the results from several research studies. Conclusions summarize results obtained in practical part.
Effect of casting conditions and heat treatment on high temperature low cycle fatigue performance of nickel superalloy Inconel 713LC
Šulák, Ivo ; Obrtlík, Karel ; Hrbáček, Karel
The present work is focused on the study of high temperature low cycle fatigue behaviour of Inconel 713LC produced by a vibratory investment casting (VIC) in as-cast conditions and in the condition after heat treatment (HT) consisting of hot isostatic pressing (HIP) followed by precipitation hardening. Low cycle fatigue tests were carried out on cylindrical specimens in symmetrical push-pull cycle under strain control with constant total strain amplitude and strain rate at 800 °C in air. Hardening/softening curves and fatigue life curves of both materials were assessed and compared with data of Inconel 713LC produced by a conventional investment casting (CIC). Cyclic hardening can be observed in the high amplitude domain while saturated stress response is apparent for low amplitude cycling for all material batches. Data presented in Basquin representation show an increase in fatigue life of both VIC batches compared to the CIC batch, however, no effect of HT on fatigue life of Inconel 713LC produced by VIC was observed. In contrast, the heat treated Inconel 713LC demonstrates slightly higher fatigue life in Coffin-Manson representation. The microstructure of both superalloys was studied by means of scanning electron microscopy (SEM). The microstructure of superalloy is characterized by dendritic grains with casting defects. It comprises the γ matrix, cubic γ´ precipitates, eutectics and carbides. The effect of the VIC and HT on fatigue performance and microstructure of Inconel 713LC is discussed.
Thermomechanical and Isothermical Fatigue of Surface Treated Nickel Superalloys
Šulák, Ivo ; Pantělejev, Libor (referee) ; Polák, Jaroslav (referee) ; Obrtlík, Karel (advisor)
Yttria-stabilized zirconia-based thermal barrier coating systems are the most widely used commercial coatings in the industry, with practical applications in aircraft engines and land-based power turbines. The purpose of thermal barriers is primarily to protect the substrate from high temperatures and also to increase its oxidation resistance. Currently, concerning the relatively frequent volcanic eruptions and increasing air traffic intensity in desert areas, increased attention is being paid to the development of new thermal and environmental coatings that will withstand the so-called CMAS attack and still successfully meeting the strictest requirements of the aerospace industry. Two newly developed experimental coatings consisting of three successive layers have been developed for this work. The upper two layers are thermal insulating ceramic coatings, where two different uppermost coatings were deposited. The first uppermost layer of the coating is a mixture of mullite and hexacelsian in a ratio of 70/30 wt. %. The second upper most type of coating consists of Al6Si2O13 + MgAl2O4 + BaCO3 in a ratio of 6:3:1 wt. %. The interlayer is made of the commercially utilized yttria-stabilized zirconia. The metallic CoNiCrAlY coating, which is directly deposited on the nickel-based superalloy MAR-M247, fulfils a compensatory function between the mechanical properties of the nickel superalloy and the ceramic coating. The thermal and environmental barrier system was deposited using air plasma spraying (APS) technology. The main objective of this work was to evaluate the effect of the newly developed thermal and environmental barrier coating, which has a high potential for the protection of component surfaces in an aggressive environment, on isothermical and thermomechanical fatigue behaviour of nickel-based superalloy MAR-M247. Low cycle fatigue tests were performed in strain control mode with constant strain amplitude on both uncoated and TEBC coated superalloy. Fatigue hardening/softening curves, cyclic stress-strain curves and fatigue life curves in the representation of total strain amplitude, plastic strain amplitude and stress amplitude on the number of cycles to failure were obtained. Microstructural analysis of MAR-M247 superalloy and a newly developed experimental coating was performed in a scanning electron microscope. The fatigue crack initiation sites were identified and the process of fatigue crack propagation was described. The dislocation arrangement after fatigue loading of MAR-M247 was investigated in a transmission electron microscope. The findings of isothermical and thermomechanical low cycle fatigue behaviour of uncoated and TEBC coated MAR-M247 superalloy and identification of damage mechanisms presented in this dissertation will improve the estimation of safe-life that is particularly relevant to aircraft engines components.
Low cycle fatigue behaviour and fatigue crack initiation in MAR-M247 at 700 °c
Šulák, Ivo ; Obrtlík, Karel ; Hrbáček, K.
The second generation nickel-based superalloy MAR-M247 offersa satisfying combination of fatigue and creep properties and oxidation and corrosion resistance that arerequired for application at elevated temperatures in hostile environments. The microstructure consists mainly oftheface centred cubic γ matrix and ordered γ ́ strengthening precipitates (L12crystal structure). The present work focuses on low cycle fatigue (LCF) behaviour of polycrystalline nickel-based superalloy MAR-M247 at high temperature. LCF tests were conducted on cylindrical specimens in symmetrical push-pull cycle under strain control with constant total strain amplitude and strain rate at 700 °C in ambientair. Cyclic stress-strain curvesand fatigue life curves in the representation ofplastic strain amplitude vs. stress amplitude andstress amplitude vs. the number of cycles to failure, respectively,were plotted and compared with data obtained on Inconel 713LC. Special attention waspaid to the investigation of crack initiation in MAR-M247 during low cycle fatigue. Crack initiation sites were studied by means of scanning electron microscopy (SEM) in dual beam microscope TESCAN LYRA 3 XMU FESEM equipped with focus ion beam (FIB). Specimens’ surface observations revealed the formation of pronounced surface relief indicating localisation of plastic deformation.Observations in transmission electron microscope (TEM)confirmed localisation of cyclic plastic deformation in persistent slip bands along {111} slip planes. Fractographic analysis revealed fatigue crack initiation sites. Fatigue crack propagation in stage I was typical of smooth facets up to 500 μm long.
LOW CYCLE FATIGUE BEHAVIOR AND FATIGUE CRACK INITIATION IN MAR-M247 AT 700 °C
Šulák, Ivo ; Obrtlík, Karel ; Hrbáček, K.
The second generation nickel-based superalloy MAR-M247 offers a satisfying combination of fatigue and creep properties and oxidation and corrosion resistance that are required for application at elevated temperatures in hostile environments. The microstructure consists mainly of the face centred cubic γ matrix and ordered γ´ strengthening precipitates (L12 crystal structure). The present work focuses on low cycle fatigue (LCF) behaviour of polycrystalline nickel-based superalloy MAR-M247 at high temperature. LCF tests were conducted on cylindrical specimens in a symmetrical push-pull cycle under strain control with constant total strain amplitude and strain rate at 700 °C in ambient air. Cyclic stress-strain curves and fatigue life curves in the representation of plastic strain amplitude vs. stress amplitude and stress amplitude vs. the number of cycles to failure, respectively, were plotted and compared with data obtained on Inconel 713LC. Special attention was paid to the investigation of crack initiation in MAR-M247 during low cycle fatigue. Crack initiation sites were studied by means of scanning electron microscopy (SEM) in dual beam microscope TESCAN LYRA 3 XMU FESEM equipped with focus ion beam (FIB). Specimens’ surface observations revealed the formation of pronounced surface relief indicating localisation of plastic deformation. Observations in transmission electron microscope (TEM) confirmed localisation of cyclic plastic deformation in persistent slip bands along {111} slip planes. Fractographic analysis revealed fatigue crack initiation sites. Fatigue crack propagation in stage I was typical of smooth facets up to 500 μm long.
Fatigue Crack Initiation in Nickel-Based Superalloy MAR-M247 at High Temperature
Šulák, Ivo ; Obrtlík, Karel
The present work is focused on the study of crack initiation during low cycle fatigue (LCF) loading of the second generation nickel-based superalloy MAR-M247 treated with hot isostatic pressing. LCF tests were conducted on cylindrical specimens in symmetrical push-pull cycle under strain control with constant total strain amplitude and strain rate at 800 °C in air atmosphere. Selected specimens were electrolytically polished to facilitate surface relief observations. Crack initiation sites were studied by means of scanning electron microscopy (SEM) in dual beam microscope TESCAN LYRA 3 XMU FESEM equipped with focus ion beam (FIB). The microstructure of the material is characterised by coarse dendritic grains with numerous carbides and small casting defects. The average grain size was 2.1 ± 0.3 mm. Fractographic analysis revealed the fatigue crack initiation sites and their relation to the casting defects and material microstructure. Casting defects, carbide inclusions and interdendritic areas were found to be important crack nucleation sites. Specimens’ surface observations revealed the formation of pronounced surface relief with short worm-like markings. Fatigue crack initiation in these places is documented and discussed.
Influence of AlCr Layer to Fatiague Properties of Nickel Superalloy IN 713LC at the Temperature 800°C
Šulák, Ivo ; Julišová, Martina (referee) ; Podrábský, Tomáš (advisor)
The present diploma thesis is focused on the effect of AlCr layer on the low cycle fatigue behaviour of cast polycrystalline superalloy IN713LC at 800°C. Protective layer is made by chemical vapour deposition followed by heat treatment. Fatigue tests were conducted in strain control mode with constant total strain amplitude and strain rate. The fatigue behaviour is assessed by cyclic hardening/softening curves, cyclic stress-strain curves, Manson-Coffin curves and Basquin curves. Microstructure was observed in as-received state and also after cyclic loading by means of optical microscopy and SEM.
Thermomechanical fatigue of nickel-based superalloys
Pech, Filip ; Škorík, Viktor (referee) ; Šulák, Ivo (advisor)
The main objective of present bachelor thesis is to compile literature review of thermomechanical fatigue of nickel-based superalloys. Superalloys were developed to work at high temperatures, where sufficiently high strength, oxidation resistance, creep resistance, and resistance to other high temperature adverse effects have to be ensured. Superalloys are despite efforts to find alternatives still widely used and therefore it is necessary to know their properties and limitations. The present review compiles basic overview of nickel-based superalloys based on specialized publications. First of all, classification of Ni-based superalloys, chemical composition, along with an overview of the most important phases, which are affecting properties of superalloys were studied in detail. The second chapter describes basics of isothermal fatigue of materials, its definition, description of mechanism and basic fatigue life curves. Penultimate chapter of this literature review deals with thermomechanical fatigue and the structure of text is similar to chapter about isothermal fatigue. In the last chapter is given an overview of thermomechanical fatigue of different types of nickel-based superalloys.

National Repository of Grey Literature : 15 records found   1 - 10next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.