National Repository of Grey Literature 8 records found  Search took 0.02 seconds. 
Characterization of hydrogenated silicon thin films and diode structures with integrated germanium nanoparticles
Stuchlík, J. ; Fajgar, R. ; Remeš, Z. ; Kupčík, Jaroslav ; Stuchlíková, H.
P-I-N diode structures based on the thin films of amorphous hydrogenated silicon (a-Si: H) deposited by Plasma Enhanced Chemical Vapor Deposition (PECVD) technique were prepared with embedded Si and Ge nanoparticles. The Reactive Laser Ablation (RLA) of germanium target was used to cover the intrinsic a-Si: H layer by Ge NPs under a low pressure of the silane. The RLA was performed using focused excimer ArF laser beam under SiH4 background atmosphere. Reaction between ablated Ge NPs and SiH4 led to formation of Ge NPs covered by thin GeSi: H layer. The deposited NPs were covered and stabilized by a-Si: H layer by PECVD. Those two deposition processes were alternated repeatedly. Volt-ampere characteristics of final diode structures were measured in dark and under illumination as well as their electroluminescence spectra.
Study of mechanical properties of nanolayered Ti/Ni coatings
Zábranský, L. ; Václavík, R. ; Přibyl, R. ; Ženíšek, J. ; Souček, P. ; Buršík, Jiří ; Fořt, Tomáš ; Buršíková, V.
The aim of the present work was to study the dependence of mechanical properties of Ti/Ni multilayer thin films on the thicknesses of constituent Ti and Ni layers. The multilayer thin films were synthesized by deposition of Ti and Ni layers alternately on single crystalline silicon substrates using direct current magnetron sputtering method. Thicknesses of Ti and Ni layers varied from 1.7 nm to 100 nm. The micro-structure of the multilayer films was studied using X-ray diffraction technique, scanning electron microscopy with focused ion beam technique and transmission electron microscopy. Mechanical properties obtained from nanoindentation experiments were discussed in relation to microstructural observations.
Quantum-mechanical study of magnetic properties of superalloy nanocomposite phase Fe2AlTi
Slávik, Anton ; Miháliková, Ivana ; Friák, Martin ; Všianská, Monika ; Šob, Mojmír
The L21-structure Fe2AlTi intermetallic compound is one of the two phases identified in Fe-Al-Ti superalloy nanocomposites. Experimental data related to low-temperature magnetic properties of this Heusler compound indicate that magnetic moment is about 0.1 Bohr magneton per formula unit. In contrast, previous quantum-mechanical calculations predicted Fe2AlTi to have much higher magnetic moment, 0.9 Bohr magneton per formula unit. In order to solve this discrepancy between the theory and experiment we have performed a series of quantum-mechanical fix-spin-moment calculations and compared our results with those for non-magnetic state. It turns out that the total energy of the non-magnetic state is only by 10.73 meV/atom higher than that of the magnetic state. When applying Boltzmann statistics to this very small energy difference we predict that the non-magnetic state appears at non-zero temperatures with significant probabilities (for instance, 22.36 % at T = 100 K) and reduces the overall magnetic moment. As another mechanism lowering the magnetization we studied selected shape deformations, in particular trigonal shearing. Fe2AlTi exhibits a compression-tension asymmetry with respect to these strains and, for example, the strain 0.08 destabilizes the spin-polarized state, leaving the non-magnetic state as the only stable one.
Electronic transfer between nanostructures. Negative differential resistance in conductive polymers.
Král, Karel ; Menšík, Miroslav
The effect of negative differential resistance can be observed experimentally in some material systems based on polymers. These observation are explained usually to be due to the presence of certain carrier traps which can capture the carriers of the electric current. In the present theoretical work we are going to show that besides this carrier trapping origin of the negative differential resistance there can also be an intrinsic mechanism present, causing such an effect. Namely, instead of the traps, the electron-phonon interaction can cooperate with the tunneling of the charge carriers between their localized states and can provide the effect the negative differential resistance. This electron-phonon interaction is included in a non-perturbative way. The theory will be briefly summarized and explained.
Histology and micro-CT study of diamond-coated metal bone implants in rabbit femurs
Potocký, Štěpán ; Ižák, Tibor ; Dragounová, Kateřina ; Kromka, Alexander ; Rezek, Bohuslav ; Mandys, V. ; Bartoš, M. ; Bačáková, Lucie ; Sedmera, David
A conformal coating of a thin diamond layer on three-dimensional metal bone implants was shown directly on stainless steel and TiAl6V4 cortical screw implant using ultrasonic and composite polymer pretreatment method. The best conformation coverage was achieved in the case of the WO3 interlayer for both stainless steel and TiAl6V4 screws. The process of osteointegration of the screw implants into rabbit femurs is evidenced by the formation of a bone edge via desmogenous ossification around the screws in less than six months after implantation. A detailed evaluation of the tissue reaction around the implanted screws shows good biocompatibility of diamond-coated metal bone implants.
Characterization of hydrogenated silicon thin films and diode structures with integrated germanium nanoparticles
Stuchlík, Jiří ; Fajgar, Radek ; Kupčík, Jaroslav ; Remeš, Zdeněk ; Stuchlíková, The-Ha
Substrates with ZnO (or ITO) conductive layers were covered by thin film of a-Si:H deposited by PECVD technique. Under a turbo-molecular vacuum (10-4 Pa) the reactive laser ablation (RLA) was used to cover this a-Si:H thin film by germanium NPs. The RLA was performed using focused excimer ArF laser beam (193 nm, 100 mJ/pulse) under SiH4 background atmosphere (0.5 Pa). As a target the elemental germanium was used. Reaction between ablated Ge and silane led to formation of Ge NPs covered by thin SiGe layer. Then the deposited NPs were covered and stabilized by a-Si:H layer by PECVD. Those two deposition processes was alternated and applied a few times. The Si:H thin films with integrated Ge NPs were characterized by microscopic, spectroscopic and diffraction techniques. I-V characteristics of final diode structures without and under illumination were measured as well as their electroluminescence behaviour.
The hydrogen plasma doping of ZnO thin films and nanoparticles
Remeš, Zdeněk ; Neykova, Neda ; Potocký, Štěpán ; Chang, Yu-Ying ; Hsu, H.S.
The optical absorptance and photoluminescence studies has been applied on the hydrogen and oxygen plasma treated, nominally undoped ZnO thin films and aligned nanocolumns grown on the nucleated glass substrate by the hydrothermal process in an oil bath containing a flask with ZnO nutrient solution. The localized defect states at 2.3 eV below the optical absorption edge were detected by photothermal deflection spectroscopy (PDS) in a broad spectral range from near UV to near IR. The optical absorptance spectroscopy shows that hydrogen doping increases free electron concentration changing ZnO to be electrically conductive (hydrogen doping).\n
Introducing Functionality by Graphene Covalent Grafting
Kovaříček, Petr ; Kalbáč, Martin
Graphene is a material of great potential in a broad range of applications, for each of which specific tuning of the material’s properties is required. This can be achieved, for example, by covalent functionalization. We have exploited protocols for surface grafting by diazonium salts, by nucleophilic and electrophilic substitution to perform graphene covalent modification of graphene on substrates. The painstaking analysis problem of monolayered materials was addressed using Raman spectroscopy, SERS, SEIRA, MS, AFM, XPS and SEM/EDX. The covalent grafting was shown to tolerate the transfer process, thus allowing ex post transfer from copper to other substrates. Functional devices often require combination of several materials with specific functions, such as graphene-polymer hybrid heterostructures. We have used the developed methodology of chemical functionalization for preparation of PEDOT:Graphene bilayers by selective in situ polymerization of EDOT on covalently functionalized graphene. The polymerization proceeds exclusively on the grafted graphene, and patterned structures with high spatial resolution down to 3 μm could have been prepared. The composite exhibits enhanced efficiency of electrochemical doping compared to pristine graphene, unsymmetrical transport characteristic with very good hole-transporting properties and efficient electronic communication between the two materials. The covalent functionalization of graphene thus introduces advanced functionality to the material, broadening its scope of applications.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.