National Repository of Grey Literature 12 records found  1 - 10next  jump to record: Search took 0.01 seconds. 
Structural and Mechanical Characteristics of Nickel-Alloyed Ductile Cast Iron
Tesařová, Hana ; Kohout, Jan (referee) ; Kruml, Tomáš (referee) ; Konečná,, Radka (referee) ; Pacal, Bohumil (advisor)
The aim of this dissertation work is the evaluation of the influence of nickel alloying on the structure and mechanical properties, both monotonic and dynamic, of nodular cast iron with ferritic and bainitic matrix. Two chock melts with 0.5 and 2.7 % Ni were used to study the nickel influence. The quantitative evaluation of structure of these melts using image analysis was done and basic tensile mechanical properties were determined. Subsequently, the time optimization of two-stage ferritic annealing and isothermal austempered heat treatment at 375 °C was performed with the aim to obtain optimal ferritic and bainitic structures with best static and dynamic mechanical properties. After ferritic annealing the nickel alloying contributes to substitution hardening of ferritic matrix which positively affects its strength and other mechanical properties. The higher nickel content in the bainitic structure causes the shift of phase transformation times to longer times which results in restricted production of small carbides and in bigger volume of retained austenite. These features were confirmed by observation in transmission electron microscope. Precise tensile and low cycle fatigue tests at temperatures 23 and – 45 °C were performed on the optimized structures of both nodular cast irons. As a result of the notch effect of graphite nodules, microplastic deformation of both nodular cast irons was observed at stresses which were lower than the yield stress. The Hollomon's equation very well describes the individual parts of tensile curves for both nodular cast irons including their mutual comparison. From the low cycle fatigue tests, the cyclic hardening/softening curves, the evolution of elastic modulus and hysteresis loop shape parameters, cyclic stress-strain curves and fatigue life curves were obtained for both temperatures and materials. Moreover, the decrease of retained austenite volume was measured by neutron diffraction and the evolution of surface relief was characterized during cyclic straining for both austempered nodular cast irons at both temperatures. On the basis of these results both cyclic plasticity and fatigue degradation mechanisms in relation to the cyclic strain localization were described for both nodular cast irons.
Investigation of basic deformation mechanisms of magnesium alloys by means of advanced in-situ methods and theoretical modeling
Čapek, Jan ; Mathis, Kristián (advisor) ; Landa, Michal (referee) ; Šiška, Filip (referee)
The work is focused on developing testing methods for investigating of the deformation mechanisms of magnesium alloys. The work involves the measurement of in-situ acoustic emission and neutron diffraction and comparison to the theoretical models. Mg + 1wt.% Zr alloy was selected for investigation of the compression - tension asymmetry. Advanced analysis of acoustic emission and neutron diffraction data revealed activation of different slip systems during deformation. Moreover, the different evolution of twinning was explained. The same methods were used to investigate the aluminum influence on deformation mechanisms. The hardening of basal slip and twinning and increasing importance of prismatic slip was observed.
Magnetic properties of R2TIn8 and related tetragonal compounds
Čermák, Petr ; Javorský, Pavel (advisor) ; Isnard, Olivier (referee) ; Honda, Fuminori (referee)
Title: Magnetic properties of R2TIn8 and related tetragonal compounds Author: Petr Čermák Department / Institute: Department of Condensed Matter Physics Supervisor of the doctoral thesis: doc. Mgr. Pavel Javorský, Dr., Department of Condensed Matter Physics Abstract: Intermetallic compounds R2TIn8 (R = rare earth, T = transition metal), commonly called "218" because of stoichiometry, are structurally related to a class of well- known Ce-based heavy-fermions like CeCoIn5 or CeRhIn5. They are located between fully 3D cubic compound (e.g. CeIn3) and quasi-2D "115" superconductors, which makes them ideal candidates to study structural dimensionality effects on various properties. Recent developments in this field showed that it is possible to grow compounds with T = Pd or Pt with "218" stoichiometry. Therefore further study of "218" compounds is desired since much less is known about them compared to "115" compounds. We have focused mainly on the determination of magnetic structures and crystal field effects along the series of Rh based "218" compounds for various rare-earth elements. The single crystals of compounds with R = Nd, Tb, Dy, Ho, Er, Tm, La, Lu, Y were successfully grown. Results of bulk measurements (specific heat, susceptibility) together with magnetic structures determined from several neutron...
Study of deformation processes in hexagonal materials
Čapek, Jan ; Mathis, Kristián (advisor) ; Karlík, Miroslav (referee)
The deformation mechanisms of commercially pure magnesium using advanced in-situ methods were investigated in the present work. Compression and tensile test were done at room temperature. Simultaneously, the neutron diffraction was measured and the acoustic emission was recorded. The microstructure of the deformed material was also studied by means of optical microscopy and electron back-scattered diffraction. These measurements provided information about twin nucleation and growth, microstructure changes and the influence of the orientation of grains on the number of twins and their shape. The values obtained were compared to the Elasto-Plastic Self-Consistent model, which provides information about the activity of deformation mechanisms. We focused on clarifying the influence of twinning activity on asymmetry between tensile and compression deformation.
Study of deformation processes in hexagonal materials
Čapek, Jan
The deformation mechanisms of commercially pure magnesium using advanced in-situ methods were investigated in the present work. Compression and tensile test were done at room temperature. Simultaneously, the neutron diffraction was measured and the acoustic emission was recorded. The microstructure of the deformed material was also studied by means of optical microscopy and electron back-scattered diffraction. These measurements provided information about twin nucleation and growth, microstructure changes and the influence of the orientation of grains on the number of twins and their shape. The values obtained were compared to the Elasto-Plastic Self-Consistent model, which provides information about the activity of deformation mechanisms. We focused on clarifying the influence of twinning activity on asymmetry between tensile and compression deformation. Powered by TCPDF (www.tcpdf.org)
Ground state investigations of Ce and U intermetallic compounds
Bartha, Attila ; Prokleška, Jan (advisor) ; Detlefs, Blanka (referee) ; Michor, Herwig (referee)
Title: Ground state investigations of Ce and U intermetallic compounds Author: Attila Bartha Department: Department of Condensed Matter Physics Supervisor: RNDr. Jan Prokleška, Ph.D., Department of Condensed Matter Physics Abstract: Rare earth and actinide intermetallic compounds offer a plethora of interesting physical properties due to the varied behavior of f -electrons together with numerous interactions these electrons are exposed to. In this thesis we address a broad spectrum of ground state investigations on CePd2X3 (X=Zn, Ga) and (Ce,U)nTIn3n+2 (T=Rh, Ir) compounds. Single crystals of CePd2Zn3 and CePd2Ga3 compounds were synthesized for the first time using Bridgman method. CePd2Ga3 revealed a ferromagnetic transition with TC = 6.7 K with a strong magnetocrystalline anisotropy. CePd2Zn3 orders antiferromagnetically below TN = 1.9 K. Results of magnetization measurements on Ce2IrIn8 revealed effective magnetic moment µeff = 2.45µB/Ce3+ and a paramagnetic Curie temperature θP = −31 K. Decomposition of Hall resistivity ρxy(B) into NHE and AHE revealed a predom- inance of AHE in the temperature range from 60 K up to 100 K. Ce2RhIn8 was studied by means of magnetic field and angle dependent magnetization and heat capacity measurements. The resulting phase diagram reveals a complete unfold- ing and...
Investigation of basic deformation mechanisms of magnesium alloys by means of advanced in-situ methods and theoretical modeling
Čapek, Jan ; Mathis, Kristián (advisor) ; Landa, Michal (referee) ; Šiška, Filip (referee)
The work is focused on developing testing methods for investigating of the deformation mechanisms of magnesium alloys. The work involves the measurement of in-situ acoustic emission and neutron diffraction and comparison to the theoretical models. Mg + 1wt.% Zr alloy was selected for investigation of the compression - tension asymmetry. Advanced analysis of acoustic emission and neutron diffraction data revealed activation of different slip systems during deformation. Moreover, the different evolution of twinning was explained. The same methods were used to investigate the aluminum influence on deformation mechanisms. The hardening of basal slip and twinning and increasing importance of prismatic slip was observed.
Investigation of residual stresses and deformation mechanisms of magnesium-based composites by means of neutron diffraction and acoustic emission methods
Farkas, Gergely ; Mathis, Kristián (advisor) ; Dobeš, Ferdinand (referee) ; Nguyen, Quang Chinh (referee)
The objective of this thesis is to study the mechanical properties of magnesium-based composite (AX41) reinforced by short Saffil fibers. Two type of samples have been investigated: fiber plane parallel respective perpendicular to the loading axis. In both case compression tests were performed in temperature range from 23řC to 200řC. Deformation test were completed by acoustic emission and neutron diffraction measurement. Both methods provide information about the ongoing deformation mechanisms. Microstructure of deformed sample was investigated by SEM and EBSD methods in order to confirm the ND and AE results. The internal strain field in the material was predicted with numerical FEM and compared with the observed experimental values.
Magnetic properties of R2TIn8 and related tetragonal compounds
Čermák, Petr ; Javorský, Pavel (advisor) ; Isnard, Olivier (referee) ; Honda, Fuminori (referee)
Title: Magnetic properties of R2TIn8 and related tetragonal compounds Author: Petr Čermák Department / Institute: Department of Condensed Matter Physics Supervisor of the doctoral thesis: doc. Mgr. Pavel Javorský, Dr., Department of Condensed Matter Physics Abstract: Intermetallic compounds R2TIn8 (R = rare earth, T = transition metal), commonly called "218" because of stoichiometry, are structurally related to a class of well- known Ce-based heavy-fermions like CeCoIn5 or CeRhIn5. They are located between fully 3D cubic compound (e.g. CeIn3) and quasi-2D "115" superconductors, which makes them ideal candidates to study structural dimensionality effects on various properties. Recent developments in this field showed that it is possible to grow compounds with T = Pd or Pt with "218" stoichiometry. Therefore further study of "218" compounds is desired since much less is known about them compared to "115" compounds. We have focused mainly on the determination of magnetic structures and crystal field effects along the series of Rh based "218" compounds for various rare-earth elements. The single crystals of compounds with R = Nd, Tb, Dy, Ho, Er, Tm, La, Lu, Y were successfully grown. Results of bulk measurements (specific heat, susceptibility) together with magnetic structures determined from several neutron...
Study of deformation processes in hexagonal materials
Čapek, Jan
The deformation mechanisms of commercially pure magnesium using advanced in-situ methods were investigated in the present work. Compression and tensile test were done at room temperature. Simultaneously, the neutron diffraction was measured and the acoustic emission was recorded. The microstructure of the deformed material was also studied by means of optical microscopy and electron back-scattered diffraction. These measurements provided information about twin nucleation and growth, microstructure changes and the influence of the orientation of grains on the number of twins and their shape. The values obtained were compared to the Elasto-Plastic Self-Consistent model, which provides information about the activity of deformation mechanisms. We focused on clarifying the influence of twinning activity on asymmetry between tensile and compression deformation. Powered by TCPDF (www.tcpdf.org)

National Repository of Grey Literature : 12 records found   1 - 10next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.