Národní úložiště šedé literatury Nalezeno 25 záznamů.  1 - 10dalšíkonec  přejít na záznam: Hledání trvalo 0.01 vteřin. 
Modelling of Pulse Propagation in Nonlinear Photonic Structures
Sterkhova, Anna ; Richter, Ivan (oponent) ; Samek, Ota (oponent) ; Petráček, Jiří (vedoucí práce)
The demand for more effective data-storage and faster signal processing is growing with every day. That is why the attention of the scientists is focused on the all-optical devices, which can improve the above mentioned requirements. Microring optical resonators are among the state of art devices, that are under consideration. There is a variety of numerical techniques to simulate processes occurring while the optical signal propagates in the microring resonator structure. They differ in its calculation effectivity, used approximations and possibilities of application. The aim of this work was to develop two simple and practical numerical methods for simulation of pulse propagation in nonlinear waveguide structures. It was also demanded, that opposed to the commonly known and frequently used finite-difference time-domain (FD-TD) method, the newly developed techniques could be easily applicable for the study of nonlinear structures based on microring resonators. That is why developed methods use some approximations, namely the slowly varying envelope approximation. The methods advantage is high speed and low requirements of computational resources. Both techniques are based on observation that waveguide structures that use microring optical resonators can be considered as composed of single waveguides and waveguide couplers. The first numerical technique solves coupled partial differential equations, which describe pulse envelope propagation in the structure. This method uses the “up-wind” scheme, which is suitable for the partial differential equations that describe the wave propagation. The second developed technique is derived from the first one. The difference between methods is in the treatment of the coupling between two waveguides. If in the first method the coupling is considered as the real one, distributed on the given length, in the second method the coupling is considered to be concentrated in one point. Due to this approximation it is possible to integrate the appropriate equations and achieve significant increase of calculation speed. Quasianalytical character of the second method enables also easy identification of different types of steady-state solutions. Due to these properties the second method was used to study spontaneous generation of optical pulses in the structures, consisting of coupled ring resonators. Both methods, which were developed during this work, represent fast and physically illustrative alternatives to the FD-TD, so it can be expected that these methods can play an important role during the research of nonlinear waveguide structures.
Simulations of light scattering from living cells
Vengh, Martin ; Richter, Ivan (oponent) ; Petráček, Jiří (vedoucí práce)
The master's thesis deals with the scattering of electromagneticc waves from a living cell using the finite-difference time-domain method (FDTD), the Born approximation and the Rytov approximation. FDTD is full wave method that gives accurate results in wide variety of scattering problems. The comparison of the Born aproximation and the Rytov aproximation is presented via FDTD method. Next part of my thesis includes a short description of coherence-controlled holographic microscope (CCHM). The final part deals with the imaging of the scattered field via simulation of object arm of CCHM, using results of the Born approximation, Rytov approximation and FDTD method.
Plasmonic biosensors based on extraordinary optical transmission
Dršata, Martin ; Richter, Ivan (oponent) ; Petráček, Jiří (vedoucí práce)
This diploma thesis deals with rigorous simulations of plasmonic biosensors based on the phenomenon of extraordinary optical transmission. The first part is devoted to the description of the physical phenomena and knowledge, that forms the basis for studying the properties of plasmonic sensors, and the description of the finite-difference time-domain numerical method, that is used for all simulations carried out in this work. Simulation results are listed in the next part of this thesis. Here, the sensitivity, resolution and other characteristics of the chosen type of plasmonic sensor, consisting of an array of circular nanoholes in a thin gold film on the silicon nitride substrate, on a number of its geometrical parameters is investigated. These dependencies are monitored in three different cases, namely a sensor placed in a vacuum, immersed in water and where a thin dielectric layer is present on the gold surface, mimicking the presence of biomolecules immobilized the surface of the sensor.
Difrakce na prostorových a/nebo hlubokých objektech
Hrabec, Aleš ; Petráček, Jiří (oponent) ; Kotačka, Libor (vedoucí práce)
Práce je věnována teoretickému studiu průchodu záření difrakčním stínítkem, jehož rozměr ve směru šíření záření je nenulový, tedy průchod záření trojrozměrným otvorem. Bez újmy na obecnosti řešíme problém pouze pro případ válcové dutiny v kovu. Problém evidentně přesahuje standardní skalární teorii difrakce a k jeho řešení přistupujeme pomocí vlnovodné teorie. Na základě principů elektromagnetické teorie nejdříve odvodíme potřebné vztahy pro určení modů na vstupu dutiny. Dále numericky řešíme vlastní šíření záření dutinou, resp. hledáme rozložení záření na konci dutiny. Z toho pomocí diskrétní Fourierovy transformace určíme hledanou intenzitu Fraunhoferovy difrakce, kterou následně porovnáváme s rozložením intenzity záření Fraunhoferovy difrakce na nekonečně tenkém kruhovém otvoru o poloměru zmiňované dutiny. Tímto porovnáním ukážeme, že délka dutiny má zásadní vliv na difrakční obrazec, čímž zároveň ukážeme, že skalární difrakční teorie přestává platit pro popis průchodu koherentního záření dutinami s délkou úměrnou čtverci poloměru. Podobně pro platnost skalární teorie platí nepřímá úměra na vlnové délce interagujícího záření. Na závěr zmíníme existenci tzv. fokusačního režimu, kdy shledáme, že na konci dutiny dochází s rostoucí délkou dutiny k opakovanému přibližně řádovému nárustu intenzity záření na ose symetrie dutiny.
Rigorózní simulace interakce světla s buňkami
Dršata, Martin ; Kalousek, Radek (oponent) ; Petráček, Jiří (vedoucí práce)
Tato bakalářská práce se zabývá rigorózními simulacemi rozptylu světla na živých buňkách. První část je věnována úvodu do dané problematiky a základnímu popisu často využívaných výpočetních metod a modelů buněčných struktur. Experimentální část se zabývá simulacemi rozptylu světla metodou konečných diferencí v časové oblasti (FDTD). K simulacím jsou využity modely dokonale sférické buňky a červené krvinky. V případě prvního modelu je také posouzena přesnost metody FDTD pomocí analytické metody využívající Mieovu teorii rozptylu světla.
Modelování fotonických struktur pomocí metody konečných diferencí v časové oblasti
Procházka, Pavel ; Kalousek, Radek (oponent) ; Petráček, Jiří (vedoucí práce)
Tato bakalářská práce je zaměřena na základní popis metody konečných diferencí v časové oblasti (FDTD, Finite-Difference Time-Domain method), která slouží k numerickému řešení Maxwellových rovnic. FDTD je dnes velmi používaná hlavně proto, že během jednoho výpočtu lze získat výsledky v širokém frekvenčním spektru. Práce obsahuje odvození rovnic pro popis této metody a algoritmus výpočtu. Základním úkolem bylo seznámit se s volně dostupným programem Meep, který k těmto výpočtům slouží a pochopit jeho vlastnosti. Většina funkcí Meep je popsána na třech příkladech v druhé části bakalářské práce.
Correlation and Spiral Microscopy using a Spatial Light Modulation
Bouchal, Petr ; Čižmár,, Tomáš (oponent) ; Jákl, Petr (oponent) ; Petráček, Jiří (vedoucí práce)
The doctoral thesis presents a review of the main research results obtained in the course of doctoral studies. In the introductory part, the motivation and technical support for the planned research are discussed in connection with research activities of the group of Experimental Biophotonics at the Institute of Physical Engineering, Brno University of Technology. The scientific part of the doctoral thesis is divided into two main parts devoted to new imaging concepts and modifications of current experiments to extend their application potential. Achieved results support the research development in the areas of correlation and spiral microscopy, utilizing a spatial light modulation as a key experimental technique. Among the new imaging concepts, the correlation imaging is examined under conditions of partial spatial and temporal coherence of light. Subsequently, the principles of singular optics and nondiffracting propagation of light are advantageously implemented in correlation, holographic and optical microscopy, resulting in advanced imaging techniques and holographic reconstructions. Specifically, the vortex and nondiffracting beams and the self-imaging effects are successfully deployed using either optical or digital tools and gradually applied to 3D spiral imaging ensuring the edge contrast enhancement or axial localization of microobjects by the rotating point spread function. The results obtained by the theoretical analysis and the experimental testing of the proposed imaging modalities are also presented. In the technical part of the doctoral thesis, up-to-date imaging configurations aided by a spatial light modulator are optimized, allowing the wide-field correlation imaging and achromatic high-resolution imaging by a programmable diffractive lens. In the correlation imaging, the enhanced field of view is achieved by deploying a relay optical system in standard experiments, while achromatic correction of diffractive lenses is implemented by a specially designed refractive corrector. Using birefringence of liquid crystal molecules of light modulating devices, a new phase-shifting technique is proposed and tested in polarization adapted Mirau interferometer. Acquired experimental know-how is fully exploited in the design of multimodal microscope working with different imaging modes implemented using an add-on module connected to standard microscope.
Využití metody FDTD k modelování zobrazování v biofotonice
Říha, René ; Richter, Ivan (oponent) ; Petráček, Jiří (vedoucí práce)
Diplomová práce se zabývá ověřením praktické využitelnosti metody FDTD pro simulaci zobrazování v koherencí řízeném holografickém mikroskopu. Byly podrobně prozkoumány různé možnosti určení matice rozptylu a vybrán optimální postup založený na rigorózním výpočtu dalekého pole. Matice rozptylu, nesoucí informaci o pozorovaném předmětu, je pak použita k analytickému výpočtu signálu mikroskopu; při tom také byly vyhodnoceny dvě úrovně aproximací aperturních funkcí. Výsledky byly porovnány s tradičním postupem založeným na Rytovově aproximaci a vymezena oblast platnosti této aproximace. Na základě simulací holografického mikroskopu byly dále prozkoumány závislosti podélné rozlišovací schopnosti na aperturách objektivu a osvětlení a citlivost holografického signálu ke změně indexu lomu vzorku.
Application of Plasmon Polaritons in Nanophotonics
Břínek, Lukáš ; Petráček, Jiří (oponent) ; Dostálek,, Jakub (oponent) ; Dub, Petr (vedoucí práce)
The work deals with plasmonic antennas for infrared and visible wavelengths. This work involves fabrication, measurements and numerical modelling of optical properties of these structures. First, infrared plasmonic antennas deposited on the SRON layer with a signi cant absorption are studied both for their resonant and absorption properties. The antenna geometry providing maximal enhancement of the absorption eciency in the SRON layer is found. Subsequently, the ability of a plasmonic antenna resonance to enhance a given vibrational mode of its substrate (called SEIRS) possessing 3-4 material resonances is studied and conrmed on antennas on SRON. In the end, the measured cathodoluminescence spectra of visible antennas are presented to show dierent types of antenna excitation.
Využití metody FDTD k modelování zobrazování v biofotonice
Říha, René ; Richter, Ivan (oponent) ; Petráček, Jiří (vedoucí práce)
Diplomová práce se zabývá ověřením praktické využitelnosti metody FDTD pro simulaci zobrazování v koherencí řízeném holografickém mikroskopu. Byly podrobně prozkoumány různé možnosti určení matice rozptylu a vybrán optimální postup založený na rigorózním výpočtu dalekého pole. Matice rozptylu, nesoucí informaci o pozorovaném předmětu, je pak použita k analytickému výpočtu signálu mikroskopu; při tom také byly vyhodnoceny dvě úrovně aproximací aperturních funkcí. Výsledky byly porovnány s tradičním postupem založeným na Rytovově aproximaci a vymezena oblast platnosti této aproximace. Na základě simulací holografického mikroskopu byly dále prozkoumány závislosti podélné rozlišovací schopnosti na aperturách objektivu a osvětlení a citlivost holografického signálu ke změně indexu lomu vzorku.

Národní úložiště šedé literatury : Nalezeno 25 záznamů.   1 - 10dalšíkonec  přejít na záznam:
Viz též: podobná jména autorů
1 Petráček, Jan
Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.