Národní úložiště šedé literatury Nalezeno 34 záznamů.  1 - 10dalšíkonec  přejít na záznam: Hledání trvalo 0.04 vteřin. 
HIGH - TEMPERATURE CREEP BEHAVIOUR OF CAST COBALT-BASE SUPERALLOYS
Dvořák, Jiří ; Král, Petr ; Kvapilová, Marie ; Hrbáček, Karel ; Sklenička, Václav
Two cast and heat-treated NbC and TaC – strengthened cobalt superalloys have been developed for a precision casting of spinner discs for glass wool industry. In this work constant load creep tests in tension were carried out in argon atmosphere at three testing temperature 900, 950 and 1000 °C and at the initial applied stresses ranged from 40 to 200 MPa. All the tests were continued until the final fracture. The results of creep testing were combined with microstructural and fractographic examinations by means of light and scanning electron microscopy. A mutual comparison of creep characteristics of the investigated superalloys under comparable creep loading conditions showed that NbC-strengthened superalloy exhibited longer creep life than TaC-strengthened one. Further, it was found that carbide precipitation is the primary strengthening mechanism in both cobalt-base superalloys under investigation and the amount, morphology\nand type of carbides have the decisive effect on the creep properties including creep damage and fracture processes. By contrast, NbC-superalloy exhibited a more brittle character of creep fracture mode than TaCstrengthened superalloy. This study was initiated to investigate in more details creep deformation processes and the effect of the creep microstructure and damage evolution on both investigated superalloys. The different behaviour and properties of studied superalloys were explained based on the received results of this study.
Influence of the Upper Die and of the Indenter Material on the Time to Rupture of Small Punch Creep Tests
Andrés, D. ; Dymáček, Petr ; Lacalle, R. ; Álvarez, J. A.
The Small Punch Creep test has proven to be a suitable technique for assessing the\nproperties of in-service components. It is a reliable, efficient and cost-effective test for predicting\nthe behaviour of the material. The aim of this paper is to analyse the influence of different factors\non the Small Punch Creep (SPC) tests. The influence of the specimen clamping has been studied,\nexperimentally and by means of finite element models on different materials. In the analysed\nconditions, it has been proven that the influence of the upper die on the tests results is generally\nrelatively insignificant, even in the absence of upper die.\nFurthermore, the use of different materials at the punch has also been analysed. In order to achieve\nthis goal, SPC tests have been carried out on two light alloys (AZ31 and AlSi9Cu3) at 473 and\n523K. Three different balls have been employed: ceramic, tungsten-carbide and steel balls. It has\nbeen proven that for the creep ductile alloy (AZ31), there is no apparent effect on the specimen\nresponse. On the other hand, for the creep brittle alloy (AlSi9Cu3), a different trend of the material\nresponse is shown, dependent on the ball used. As a result, there seems to be a significant influence\nof the friction between the punch and the specimen on the tests results, related to the material\nbehaviour.
Dynamic stability of Ni fcc crystal under isotropic tension
Řehák, Petr ; Černý, M.
Lattice dynamics and stability of fcc crystal of Ni under isotropic (hydrostatic) tensile loading are studied from first principles using supercell method and a harmonic approximation. According to the results, strength of the crystal is determined by occurrence of an instability related to soft phonons with finite wave vector. On the other hand, the critical strains and stresses associated with such instabilities are only slightly lower than those related to the volumetric instability.
Thermodynamics of Dislocation Pattern Formation at the Mesoscale
Gröger, Roman
We introduce a mesoscopic framework that is capable of simulating the evolution of dislocation networks and, at the same time, spatial variations of the stress, strain and displacement fields throughout the body. Within this model, dislocations are viewed as sources of incompatibility of strains. The free energy of a deformed solid is represented by the elastic strain energy that can be augmented by gradient terms to reproduce dispersive nature of acoustic phonons and thus set the length scale of the problem. The elastic strain field that is due to a known dislocation network is obtained by minimizing the strain energy subject to the corresponding field of incompatibility constraints. These stresses impose Peach-Koehler forces on all dislocations and thus drive the evolution of the dislocation network.
IN-SITU HIGH TEMPERATURE LOW CYCLE FATIGUE STUDY OF SURFACE TOPOGRAPHY EVOLUTION IN NICKEL SUPERALLOY
Petrenec, M. ; Polák, Jaroslav ; Šamořil, T. ; Dluhoš, J. ; Obrtlík, Karel
In-situ Low Cycle Fatigue test (LCF) at temperature 635 degrees C have been performed in Scanning Electron Microscope (SEM) equipped with Electron Backscatter Diffraction analysis (EBSD) on a small dog-bone-shaped specimen of cast Inconel 713LC superalloy. The aim of the work was to study early stage fatigue damage at high temperature by the observations of the characteristic surface relief evolution and crystallographic characterization changes by EBSD. The detail of slip bands shape was checked by FIB and AFM microscopes. The LCF test was conducted on GATAN stage with pre tilted position and constant stress amplitude of total cycle number of 20. The relief produced in the first cycle determines the other locations of the localized cyclic slip to the primary slip planes (111). The relief was modified in the next cycles but without forming additionally new slip traces in the primary system. Based on EBSD analysis before and after LCF, the orientation of two grains was changed which caused activation of second slip system. The damage mechanism evolution is closely connected with the cyclic strain localization to the persistent slip bands where the fatigue cracks were initiated.
HYDROGENATION PROPERTIES OF BALL-MILLED Mg-Ti-C-Zr COMPOSITE
Král, Lubomír ; Čermák, Jiří ; Roupcová, Pavla
The hydrogen storage properties of ball-milled Mg-Ti-Zr-C composite (1.8 wt.% Ti, 1.9 wt.% Zr and 0.2 wt.% C) were investigated. It has been previously shown, that the addition of Ti, Zr and C improved its storage properties. This beneficial effect of additives upon hydrogen storage properties can be explained by catalysis by the particles rich in Ti or Zr located on the surface of Mg grains. They provide effective pathways for the hydrogen diffusion into the MgH2. The morphological and microstructural characteristics were investigated by scanning electron microscopy and by X-ray diffraction. The hydrogen sorption was measured by Sieverts method using Setaram PCT-Pro device. In this paper, sorption behaviour of the composite after ball-milling and after aging on the air was compared. The ball-milled composite adsorbed 3.5 wt.% H2 within 10 min at 623 K. However, hydrogen storage capacity of the composite aged on the air for 7 months remarkably decreased: The aged composite adsorbed within 10 min only 2 wt.% H2 at 623 K and the sorption capacity decreased from 4.7 wt.% H2 to 2.1 wt.% H2.
THE EFFECT OF MO AND/OR C ADDITION ON MICROSTRUCTURE AND PROPERTIES OF TIAL ALLOYS
Chlupová, Alice ; Kruml, Tomáš ; Roupcová, Pavla ; Heczko, Milan ; Obrtlík, Karel ; Beran, Přemysl
Cast TiAl alloys with high Nb content are subject of extensive research with the aim to develop material with low density, good corrosion resistance and high strength at elevated temperatures. Disadvantage of their broad applications is restricted workability, machinability and low fracture toughness especially at room temperature. Improvement of properties of TiAl based materials can be achieved by tailoring the microstructure by modification of chemical composition. For this purpose 5 types of TiAl alloys with 7 % of Nb were prepared having variable content of Mo and/or C. Addition of Mo and/or C resulted in three types of microstructure and different phase composition. All modified alloys contain colonies consisting of thin lamellae of a and g phases sometimes complemented by g and/or b phase at the grain boundaries. Variable microstructure and phase composition resulted in differences in mechanical behaviour. The most promising tensile properties at both room and elevated temperature were observed for alloy doped with 2 % of Mo having the mixed microstructure containing b phase and for alloy doped with 0.5 % of C with nearly lamellar microstructure without b phase. 2Mo alloy exhibited reasonably good ductility while 0.5C alloy reached the highest tensile strength. Also low cycle fatigue behaviour of these two materials was the best of all five materials under investigation. Fatigue deformation characteristics were better in the case of 2Mo alloy while 0.5C alloy exhibited higher cyclic stresses. Fracture mechanisms were determined using fractographic analysis. The major fracture mode of all alloys was trans-lamellar.
Analysis of nanoparticles released from the car brakes
Švábenská, Eva ; Roupcová, Pavla ; Schneeweiss, Oldřich
Our research is focused on the phase, structure and chemical analysis of the powder particles released by braking of cars from their brake components – discs and pads. The basic information on structure and phase composition was obtained by X-Ray Powder Diffraction, Mössbauer Spectroscopy and scanning electron microscopy with EDX. The results of the particle analysis are compared with materials used for manufacturing brake components and with the powder prepared by ball milling of the mixture of the pad composite and disk steel. Most of recognized nanoparticles are based on carbon, silica/silicates and iron oxides. Their effects on street environment are mentioned.
HYDROGEN STORAGE IN Mg-In-C ALLOYS: EFFECT OF COMPOSITION AND AGEING
Čermák, Jiří ; Král, Lubomír
Hydrogen storage in two Mg-In-C alloys with different In concentration, c In , was studied in the temperature range from 250°C to 350°C after five-years-ageing at room temperature. The both alloys show acceptable cycling stability, however, the storage capacity of the alloys decreased from about 5 wt. % H2 to about 2,5 and 3.1 wt. % H 2 by higher c In and lower c In , respectively after 5 years. The sorption kinetics degraded much more by high c In than by c In . PCT isotherms, TPS and DSC patterns were measured for both materials. It was found that the hydrides responsible for hydrogen storage in alloy with higher c In are slightly more stable.
The Changes in Structure of Steel P91 after Short Annealings
Král, Lubomír ; Čermák, Jiří ; Král, Petr
Phase composition of the steel P91 during annealing was studied with the aim to reveal the evolution of new phases. In this paper, the precipitation was characterized using energy-dispersive X-ray spectroscopy (EDS) and electron diffraction in transmission microscopy (TEM). Only Nb-rich particles were found in the studied samples austenitized at 1423 °C for 20h and water cooled. After tempering at 673 °C for 2 h, the formation mainly M3C type carbides and after tempering at 873 °C for 2 h, the formation of M7C3 and M23C6 was observed. These structure changes play an important role for stability and also carbon diffusion.

Národní úložiště šedé literatury : Nalezeno 34 záznamů.   1 - 10dalšíkonec  přejít na záznam:
Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.