Národní úložiště šedé literatury Nalezeno 6 záznamů.  Hledání trvalo 0.01 vteřin. 
Application of the Infinitely Many Times Repeated BNS Update and Conjugate Directions to Limited-Memory Optimization Methods
Vlček, Jan ; Lukšan, Ladislav
To improve the performance of the L-BFGS method for large scale unconstrained optimization, repeating of some BFGS updates was proposed. Since this can be time consuming, the extra updates need to be selected carefully. We show that groups of these updates can be repeated infinitely many times under some conditions, without a noticeable increase of the computational time. The limit update is a block BFGS update. It can be obtained by solving of some Lyapunov matrix equation whose order can be decreased by application of vector corrections for conjugacy. Global convergence of the proposed algorithm is established for convex and sufficiently smooth functions. Numerical results indicate the efficiency of the new method.
Reliable computation and local mesh adaptivity in limit analysis
Sysala, Stanislav ; Haslinger, Jaroslav ; Repin, S.
The contribution is devoted to computations of the limit load for a perfectly plastic model with the von Mises yield criterion. The limit factor of a prescribed load is defined by a specific variational problem, the so-called limit analysis problem. This problem is solved in terms of deformation fields by a penalization, the finite element and the semismooth Newton methods. From the numerical solution, we derive a guaranteed upper bound of the limit factor. To achieve more accurate results, a local mesh adaptivity is used.
Programs and Algorithms of Numerical Mathematics 19 : Hejnice, June 24-29, 2018 : proceedings of seminar
Chleboun, J. ; Kůs, Pavel ; Přikryl, Petr ; Rozložník, Miroslav ; Segeth, Karel ; Šístek, Jakub ; Vejchodský, Tomáš
These proceedings contain peer-reviewed papers that are based on the invited lectures, survey lectures, short communications, and posters presented at the 19th seminar Programs and Algorithms of Numerical Mathematics (PANM) held in the International Center for Spiritual Rehabilitation, Hejnice, Czech Republic, June 24-29, 2018. The seminar was organized by the Institute of Mathematics of the Czech Academy of Sciences under the auspices of EU-MATHS-IN.cz, Czech Network for Mathematics in Industry, and with the financial support provided by the RSJ Foundation. It continued the previous seminars on mathematical software and numerical methods held (biennially, with only one exception) in Alšovice, Bratříkov, Janov nad Nisou, Kořenov, Lázně Libverda, Dolní Maxov, and Prague in the period 1983-2016. The objective of this series of seminars is to provide a forum for presenting and discussing advanced topics in numerical analysis, computer implementation of numerical algorithms, new approaches to mathematical modeling, and single- or multi-processor applications of computational methods.
Multivariate smooth interpolation that employs polyharmonic functions
Segeth, Karel
We study the problém of construction of the smooth interpolation formula presented as the minimizer of suitable functionals subject to interpolation constraints. We present a procedure for determining the interpolation formula that in a natural way leads to a linear combination of polyharmonic splines complemented with lower order polynomials therms. In general, such formulae can be very useful e.g. in geographic information systems or computer aided geometric design. A simple computational example is presented.
Strategies for computation of Lyapunov exponents estimates from discrete data
Fischer, Cyril ; Náprstek, Jiří
The Lyapunov exponents (LE) provide a simple numerical measure of the sensitive dependence of the dynamical system on initial conditions. The positive LE in dissipative systems is often regarded as an indicator of the occurrence of deterministic chaos. However, the values of LE can also help to assess stability of particular solution branches of dynamical systems. The contribution brings a short review of two methods for estimation of the largest LE from discrete data series. Two methods are analysed and their freely available Matlab implementations are tested using two sets of discrete data: the sampled series of the Lorenz system and the experimental record of the movement of a heavy ball in a spherical cavity. It appears that the most important factor in LE estimation from discrete data series is quality of the available record.
A Hybrid Method for Nonlinear Least Squares that Uses Quasi-Newton Updates Applied to an Approximation of the Jacobian Matrix
Lukšan, Ladislav ; Vlček, Jan
In this contribution, we propose a new hybrid method for minimization of nonlinear least squares. This method is based on quasi-Newton updates, applied to an approximation A of the Jacobian matrix J, such that AT f = JT f. This property allows us to solve a linear least squares problem, minimizing ∥Ad+f∥ instead of solving the normal equation ATAd+JT f = 0, where d ∈ Rn is the required direction vector. Computational experiments confirm the efficiency of the new method.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.