National Repository of Grey Literature 5 records found  Search took 0.01 seconds. 
Electrical properties of nanoscale heterojunctions formed between GaN and ZnO nanorods
Tiagulskyi, Stanislav ; Yatskiv, Roman ; Grym, Jan ; Schenk, Antonín ; Roesel, David ; Vaniš, Jan ; Hamplová, Marie
Vertical periodic arrays of ZnO nanorods are prepared by hydrothermal growth on GaN templates patterned by focused ion beam. Electro-physical properties of a single vertically-oriented ZnO nanorod are investigated by measuring the current-voltage characteristics using a nanoprobe in a scanning electron microscope. This technique enables to observe the surface morphology of ZnO nanorods simultaneously with their electrical characterization in vacuum. The vacuum chamber rejects the impact of gas adsorption and light irradiation, which both affect the properties of ZnO nanorods. Moreover, mechanical damage and strain induced during the nanorod transfer are eliminated. Nonlinear current-voltage characteristics under the forward bias are explained by the tunneling-recombination process and by the space charge limited current. The high reverse bias current in the p-n heterojunction is attributed to direct tunneling via a narrow tunnel barrier
Effect of heat treatment on the properties of sol-gel deposited ZnO seed layers
Bašinová, Nikola ; Černohorský, Ondřej ; Grym, Jan ; Maixner, J.
Zinc oxide nanorods as a potential material for nanoscale devices are prepared by chemical bath deposition (CBD). The effect of the quality of the sol-gel deposited seed layer on the vertical alignment of the nanorods to a silicon substrate is discussed. Emphasis is put on the investigation of the impact of the heat treatment on the properties of the seed layer deposited by dip-coating. The sol-gel method is a multi-stage process consisting of three principal steps: (i) preparation of a solution with suitable precursors, (ii) deposition of the precursor solution, and (iii) the heat treatment. The preheating needs to be performed to thermally decompose the zinc acetate precursor into zinc oxide seeds. Three different temperatures of preheating are compared (300 degrees C, 350 degrees C, 400 degrees C) followed by annealing in argon at 800 degrees C and the influence on the quality of the seed layers and vertical alignment of nanorods are discussed. When the preheating temperature is higher than 350 degrees C, the seed layer comprises smaller and denser crystallites with a preferential orientation along the c-axis. CBD growth of ZnO nanorods on these seed layers results in their good vertical alignment
Nanofiber dressing consisting of antisense rna-functionalized nanodiamonds for therapy of non-healing wounds in diabetic individuals
Neuhoferová, Eva ; Petráková, V. ; Vocetková, K. ; Kindermann, Marek ; Křivohlavá, Romana ; Benson, Veronika
Non-healing wounds are serious complication in diabetic patients and represent an attractive challenge for development of suitable carrier system possessing constant and localized release of therapeutic biomolecule into the wound without any undesired side effects. Given the fact that these non-healing wounds are result of impaired balance in metalloproteinases synthesized by immune cells residing the wounds, gene therapy offering knock down of such enzymes is of great interest. \nHere we challenged a development of functional and biocompatible wound dressing enabling controlled release of trackable carrier loaded with therapeutic siRNA. Our dressing consists of scaffold from degradable polymer nanofibers enriched with fluorescent nanodiamond particles (FND). We have previously shown the nanodiamond particles are great carriers for antisense RNAs. Their advantages represent high biocompatibility, stable luminescence giving us the possibility to track the carrier system in the wound, and effective release of antisense RNA in the wound. Embedding of nanodiamond-siRNA systems into nanofiber scaffold enables continuous release of siRNA and maintaining the stable siRNA concentration in the wound site resulting in a promotion of wound healing. \nWe developed FND-siRNA complexes specific to MMP-9 that efficiently inhibit the expression of target MMP-9 mRNA. The complexes were embedded into core/shell nanofibers from PVA and PCL, visualized by confocal microscopy, and characterized by electron microscopy. Real-time PCR was used to assess the silencing effect of siRNA that has been delivered to target murine fibroblasts by FND released from nanofiber dressing. Nanofiber system with embedded FNDs was applied on wounds in diabetic animal models to evaluate its suitability regarding short and long term toxicity, efficacy, and handling in vivo. \n
Nanodiamonds as an innovative system for intracellular delivery of mirna-34a inprostatic cancer therapy
Bitti, G. ; Abate, M. ; Neuhoferová, Eva ; Kindermann, Marek ; Petráková, V. ; Boccellino, M. ; Quagliuolo, L. ; Filová, Eva ; Benson, Veronika ; Caraglia, M. ; Amler, Evžen
The microRNA(miRNA)-34a is an important regulator of tumor suppression. It controls the expression of several target proteins involved in cell cycle, differentiation and apoptosis, and antagonizes processes that are necessary for basic cancer cell viability as well as cancer stemness, metastasis, and chemoresistance. It is downregulated in numerous cancer types, including prostatic cancer, and inhibits malignant growth by repressing genes involved in various oncogenic signaling pathways. Given the anti-oncogenic activity of miR-34a, here we proved the substantial benefits of a new therapeutic concept based on nanotechnology delivery of miRNA mimics. In order to monitor the miRNA-34a replacement, we used a fluorescent nanodiamond particles (FND) system with linked miRNA-34a mimic, which was delivered to PC3 and DU145 prostatic cancer cell lines. We used functionalized nanodiamonds coated with polyethylenimine to transfer miRNA-34a into PC3 and DU145 prostatic cancer cell lines and we measured the zeta-potential of these complexes before using them for in vitro experiments. A replacement of miRNA-34 was observed by monitoring levels of miRNA-34 via real-time PCR. Moreover, our in vitro experiments demonstrated that miRNA-34a replacement, using this FND delivery system, decreased viability and induced apoptosis in prostatic cancer cell lines. Our findings suggest the replacement of oncosuppressor miRNA-34a provides an effective strategy for cancer therapy and the FND-based delivery systems seems to be an excellent strategy for a safe and effective targeting of the tumor.
GENE EXPRESSION AND IMMUNOLOGICAL RESPONSE IN MICE EXPOSED TO ZnO NANOPARTICLES
Rössner ml., Pavel ; Vrbová, Kristýna ; Strapáčová, S. ; Rössnerová, Andrea ; Ambrož, Antonín ; Brzicová, Táňa ; Líbalová, Helena ; Javorková, Eliška ; Zajícová, Alena ; Holáň, Vladimír ; Kulich, P. ; Večeřa, Zbyněk ; Mikuška, Pavel ; Coufalík, Pavel ; Křůmal, Kamil ; Čapka, Lukáš ; Dočekal, Bohumil ; Šerý, Omar ; Machala, M. ; Topinka, Jan
We analyzed gene expression changes in the lungs and the immunological response in splenocytes of mice exposed by inhalation of ZnO nanoparticles - NP. Adult female ICR mice were treated for three days and three months, respectively. Analysis of differential expression in genes involved in oxidative stress was conducted using quantitative RT-PCR. The potential immunotoxic and immunomodulatory effects of ZnO NP were analyzed by phenotyping and cytokine production by splenocytes after three months exposure. Three days exposure resulted in down-regulation of GCLC, GSR, HMOX-1, NQO-1, NF-kB2, PTGS2 and TXNRD1 mRNA expression, three months exposure increased the expression of these genes. Three months exposure caused a significant decrease in the percentage of granulocytes in the spleen cells, and affected the production of IL-10 and IL-6 by lipopolysaccharide-stimulated leukocytes. In summary, our study revealed changes in the expression of genes involved in the oxidative stress response following acute ZnO NP exposure. Subchronic ZnO NP exposure induced immunomodulatory effects in the spleen.