National Repository of Grey Literature 3 records found  Search took 0.00 seconds. 
Mechanical and structural properties of collagen nanofribrous layers under simulated body conditions
Říhová, J. ; Suchý, Tomáš ; Vištejnová, L. ; Horný, L. ; Šupová, Monika
The theme of this paper is the analysis of mechanical and structural properties of nanofibrous COL under simulated body conditions and in the presence of osteoblasts and dermal fibroblasts. COL were prepared by electrostatic spinning of 8 wt% collagen type I dispersion with 8 wt% (to COL) of PEG in phosphate buffer/ethanol solution (1/1 vol). The stability of COL was enhanced by means of cross-linking with EDC and NHS at a molar ratio of 4:1. COL were exposed in culture medium for 21 days and human SAOS-2 human dermal fibroblasts and osteoblasts were cultured therein for 21 days as well.
Coaxial nanofibers with incorporated suplements for regulated chondrogenic differentiation
Korbelová, Gabriela ; Rampichová, Michala (advisor) ; Vištejnová, Lucie (referee)
In the field of regenerative medicine, regeneration of cartilage defects (caused either by injury or age-related degeneration) has become a widely discussed topic. Nanofibrous scaffolds provide a suitable environment for cell adhesion, proliferation, differentiation, and also for the local involvement of bioactive substances. Nanofibrous scaffolds mimic the extracellular matrix (ECM) of hyaline cartilage. These scaffolds are seeded with autologous chondrocytes. After having been isolated from the patient, the cells must be cultivated in vitro in order to obtain a sufficient amount of chondrocytes. Scaffolds with cultivated chondrocytes are later implanted back into the pacient. Chondrocytes, however, when grown on a 2D tissue culture plastic rapidly de-differentiate and thus lose the ability to synthesize ECM molecules. The aim of the work was modulation of chondrogenic differentiation medium through finding the ideal concentration of chondrogenic supplements, composed of L-ascorbate-2-phosphate (A2P) and dexamethasone (DEX), in the culture of primary chondrocytes seeded on a nanofibrous polycaprolactone (PCL) scaffold. The effect of different concentrations of the chondrogenic supplements on chondrocyte adhesion to the scaffold and their proliferation and differentiation was studied. The influence...
Coaxial nanofibers with incorporated supplements for regulated chondrogenic differentiation
Korbelová, Gabriela ; Rampichová, Michala (advisor) ; Vištejnová, Lucie (referee)
In the field of regenerative medicine, regeneration of cartilage defects (caused either by injury or age-related degeneration, such as osteoporosis) has become a widely discussed topic. Nanofibrous scaffolds provide a suitable environment for cell adhesion, proliferation, differentiation, and also local involvement of bioactive substances. Nanofibrous scaffolds mimic the extracellular matrix (ECM) of hyaline cartilage and thus have the potential to treat cartilage defects. The aim of the work was modulation of chondrogenic differentiation medium through finding the ideal concentration of chondrogenic supplements, composed of ascorbate-2- phosphate and dexamethasone, in the culture of primary chondrocytes of pig origin seeded on a nanofibrous polycaprolactone (PCL) scaffold. The effect of different concentrations of the chondrogenic supplements on chondrocyte adhesion to the scaffold and their proliferation and differentiation was studied. Firstly, the influence of each of the supplements alone in the medium was studied, followed by study of effects of their combinations. Then, the supplements were incorporated into the nanofibers and their effect upon their release from the nanofibers was investiaged. The supplements were studied in 21-day experiments. The chondrogenic re- differentiation was best...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.