Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.00 vteřin. 
Technological challenges in the fabrication of MoS.sub.2./sub./diamond heterostructures
Varga, Marián ; Sojková, M. ; Hrdá, J. ; Hutar, P. ; Parsa Saeb, S. ; Vanko, G. ; Pribusova Slusna, L. ; Ondič, Lukáš ; Fait, Jan ; Kromka, Alexander ; Hulman, M.
Nowadays, 2D materials are one of the most studied classes of materials. In addition to the most famous graphene, progress has been achieved in studying and using fundamental properties of transition metal dichalcogenides (TMD). Complementary, diamond as a representative of 3D materials has gained a reputation as an extremely versatile material due to its extraordinary combination of physical/chemical/electrical/optical properties. Besides these particular forms of 2D and 3D materials, their heterostructures have become very attractive due to new phenomena and functions (bandgap engineering, enhanced charge transport, optical interaction, etc.). However, individual technological procedures are still minimally investigated and described. Here, we will demonstrate a proof-of-concept for the preparation of MoS2/diamond heterostructures, where two different strategies were employed: a) growth of MoS2 layers on diamond films, and b) growth of diamond films on Si/MoS2 substrates.
Diamond coated AlGaN/GaN high electron mobility transistors - effect of deposition process on gate electrode
Vanko, G. ; Ižák, Tibor ; Babchenko, O. ; Kromka, Alexander
We studied the influence of the diamond deposition on the degradation of Schottky gate electrodes (i.e. Ir or IrO2) and on the electrical characteristics of AlGaN/GaN high electron mobility transistors (HEMTs). In present study, the diamond films were selectively deposited on the AlGaN/GaN circular HEMT by focused (ellispoidal cavity reactor) and linear antenna (surface wave) microwave plasma at different temperatures from 400°C to 1100°C. The preliminary results on electrical measurements on the diamond-coated c-HEMTs showed degraded electrical properties comparing to c-HEMTs before deposition process, which was attributed to degradation of the Ir gate electrodes even at temperatures as low as 400°C. On the other hand, metal oxide gate electrode layer (IrO2) can withstand diamond CVD process even at high temperatures (~900°C) which make it suitable for fabrication of all-in-diamond c-HEMT devices for high-power applications.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.