Národní úložiště šedé literatury Nalezeno 3 záznamů.  Hledání trvalo 0.00 vteřin. 
Vliv složení synoviální kapaliny a topografie třecích povrchů na mazání kloubních náhrad
Hekrle, Pavel ; Vampola, Tomáš (oponent) ; Vrbka, Martin (vedoucí práce)
Hlavním účelem této diplomové práce je zjistit vliv složení synoviální tekutiny a dále vliv povrchových mikrotextur na mazání kyčelních náhrad. Pro všechny experimenty byl použit kyčelní simulátor fungující na principu kyvadla. Jako kontaktní páry byly použity kovové hlavice (CoCrMo) od firmy B Braun a acetabula z optického skla, která umožňují náhled do kontaktu. Rozměry jamek byly vytvořeny na základě rozměrů skutečných implantátů. Experimenty s povrchovými mikrotexturami simulovaly chůzi po dobu 210 s a byl pozorován vývoj mazacího filmu v závislosti na čase. Výsledky ukázaly, že všechny typy testovaných struktur zlepšily mazání v kontaktní oblasti, přičemž nejlépe dopadly čtvercové a trojúhelníkové struktury. Druhá část experimentů byla provedena na základě faktu, že složení synoviální tekutiny u zdravých lidí a u pacientů s různými stádii osteoartrózy, se liší. V rámci práce byly proto porovnány experimenty s různými modelovými tekutinami, které svým složením odpovídají různým skupinám pacientů. U modelové tekutiny, která odpovídá pacientům s osteoartrózou, byly následně provedeny experimenty s jednotlivými složkami a jejich kombinacemi, aby mohlo být detailněji popsáno, jak tyto složky ovlivňují mechanismus utváření mazacího filmu. Výsledky dokazují, že změna složení synoviální tekutiny u pacientů s osteoartrózou může mít zásadní vliv na tvorbu mazacího filmu uvnitř páru.
Náhradní hlasivky pro generování zdrojového hlasu: Počítačové modelování funkce hlasivek
Matug, Michal ; Vampola, Tomáš (oponent) ; Horáček, Jaromír (oponent) ; Švancara, Pavel (vedoucí práce)
Práce se zabývá výpočtovým modelováním funkce lidských hlasivek a vokálního traktu s využitím metody konečných prvků (MKP). Hlas hraje klíčovou roli v lidské komunikaci. Proto je jedním z důležitých cílů současné medicíny vytvořit umělé hlasivky, které by mohly být implantovány pacientům, kterým musely být odstraněny jejich hlasivky původní. Pro pochopení principů tvorby hlasu, určení parametrů, které musí umělé hlasivky splňovat a ověření jejich funkčnosti je možno využít výpočtového modelování. První část práce se zabývá výpočtovým modelováním pro tvorbu lidského hlasu šeptem. V této kapitole byl na MKP modelu vokálního traktu a průdušnice zkoumán vliv velikosti mezihlasivkové mezery na rozložení vlastních frekvencí pro jednotlivé samohlásky. Dále je v práci prezentován rovinný (2D) konečnoprvkový model samobuzeného kmitání lidských hlasivek v interakci s akustickými prostory vokálního traktu. Rovinný model vokálního traktu byl vytvořen na základě snímků z magnetické rezonance (MRI). Pro řešení interakce mezi strukturou a tekutinou je použito explicitní výpočtové schéma s oddělenými řešiči pro strukturu a pro proudění. Vytvořený výpočtový model zahrnuje: velké deformace tkáně hlasivek, kontakt mezi hlasivkami, interakci mezi strukturou a tekutinou, morfování sítě vzduchu podle pohybu hlasivek (metoda Arbitrary Lagrangian-Eulerian), neustálené viskózní a stlačitelné nebo nestlačitelné proudění popsané pomocí Navier-Stokesových rovnic a přerušování proudu vzduchu během uzavření hlasivek. Na tomto modelu jsou zkoumány projevy změn tuhosti a tlumení jednotlivých vrstev (zejména pak laminy proprii). Součástí této výpočtové analýzy je také porovnání chování hlasivek pro stlačitelný a nestlačitelný model proudění. Ze získaných výsledků výpočtu MKP modelu jsou následně vytvářeny videokymogramy (VKG), které umožňují porovnat pohyb mezi jednotlivými variantami modelu a se skutečnými lidskými hlasivkami. V další části práce je potom prezentován prostorový (3D) MKP model samobuzeného kmitání lidských hlasivek. Tento prostorový model vznikl z předchozího rovinného modelu vytažením do třetího rozměru. Na tomto modelu byl opět porovnáván vliv použití stlačitelného a nestlačitelného modelu proudění na pohyb hlasivek a vytvářený zvuk s využitím videokymogramů a zvukových spekter. Poslední část práce se zabývá jednou z možností náhrady přirozeného zdrojového hlasu v podobě plátkového elementu. Chování plátkového elementu bylo zkoumáno na výpočtovém a experimentálním modelu. Experimentální model umožňuje změny v nastavení vzájemné polohy plátku vůči dorazu a provádění akustických a optických měření.
Náhradní hlasivky pro generování zdrojového hlasu
Vašek, Martin ; Vampola, Tomáš (oponent) ; Kamenický, Ján (oponent) ; Mišun, Vojtěch (vedoucí práce)
Práce se ve svých úvodních částech zabývá způsoby, jak lze nahradit chybějící zdrojový hlas u pacientů po totální laryngektomii. Jsou uvedeny jednotlivé běžně používané metody hlasové rehabilitace. Na jednoduchých výpočtových modelech je nejprve zkoumáno několik principů generování umělého zdrojového hlasu. Na základě znalostí, jak se tvoří zdravý lidský hlas, byl vybrán jeden ze způsobů jak zdrojový hlas tvořit uměle (bez činnosti lidských hlasivek). Vybrán byl princip plátkového elementu v konfiguraci (-,+). Funkce plátkového elementu spočívá v periodickém pohybu plátku a přerušování proudícího vzduchu tímto pohybem. Oproti zdravým lidským hlasivkám se plátkový element v konfiguraci (-,+) chová při své funkci odlišně. Důležité ovšem je, zda generovaný akustický signál má takové vlastnosti (složení amplitudo-frekvenčního spektra), aby bylo možné pomocí něj generovat znělé hlásky lidské řeči. Chování plátkového elementu je studováno na experimentálním a výpočtovém modelu. Konstrukční návrh experimentálního modelu vychází ze zkušeností z měření na jednoduchých modelech plátkových elementů prováděných v počátcích studia. Nový experimentální model je konstruován tak, aby umožňoval změny geometrie a vzájemné polohy plátku a dorazu. Měření prováděná na experimentálním modelu jsou především akustická měření generovaného signálu, ale jsou umožněna i optická měření polohy plátku. Princip fungování plátkového elementu vyžaduje ve výpočtovém modelu zohlednění interakce mezi plátkem a proudícím vzduchem. Je použitý obousměrný model interakce mezi fyzikálním prostředím vzduchu a plátkem. Každé z fyzikálních prostředí je řešeno na samostatném výpočtovém modelu. Interakce je řešena po částech. Jak na experimentálním, tak i na výpočtovém modelu, je sledován vliv jednotlivých parametrů na funkci příslušného modelu plátkového elementu. Jsou vyhodnoceny vlivy na základní frekvenci generovaného signálu, na stabilitu funkce a jiné důležité charakteristiky. V závěrečných kapitolách je uvedena problematika konstrukce hlasové protézy – umělé hlasivky. Autorem jsou zdůrazněna některá úskalí, která je třeba respektovat při návrhu hlasové protézy aplikovatelné u člověka.

Viz též: podobná jména autorů
15 Vampola, T.
Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.