National Repository of Grey Literature 10 records found  Search took 0.00 seconds. 
The Study of Phase Transformation in Titanium Alloys
Zháňal, Pavel ; Harcuba, Petr (advisor) ; Kalvoda, Ladislav (referee) ; Strunz, Pavel (referee)
In this work phase transformations in metastable β (primarily Ti-15Mo) alloys were studied utilizing electrical resistance, dilatometry, transmission electron microscopy and X-ray and neutron diffraction. The materials Ti-15Mo, Ti-6.8Mo-4.5Fe-1.5Al (LCB), Ti-5Al-5V-5Mo-3Cr (Ti-5553), Ti-29Nb-1Fe-0.5Si (TNFS), Ti-15Mo-3Nb-3Al-0.2Si (Timetal 21S) and Ti-13Cr-1Fe-3Al (TCFA) (in wt. %) - were subjected to a solution treatment at a temperature above β transus and quenched into water. In this condition, the microstructure of the investigated materials consists of β matrix and ω particles. Samples quenched from important temperatures determined from in-situ electrical resistance and dilatometry measurements were studied by post-mortem TEM. In-situ X-ray and neutron diffraction provided direct observations of microstructure of Ti-15Mo alloy during linear heating and confirmed statements based on results of indirect methods, such as: the decrease of volume fraction of ω phase during heating at low temperatures (up to 250 ◦ C), complete dissolution of ω phase at 560 ◦ C and precipitation of α phase without ω particles serving as its direct precursors. X-ray diffraction experiment allowed to determine relative evolution of the size of ω particles while phase fraction evolution was derived from neutron diffraction. The...
Residual stress determination by neutron diffraction in low-carbon steel wires with accumulated shear deformation
Rogante, M. ; Mikula, Pavol ; Strunz, Pavel ; Zavdoveev, A.
Modern methods of severe plastic deformation (SPD) currently allow obtaining the ultrafine-grained (UFG) structure nearly in any material. In the manufacturing process of wire with UFG structure, a main restriction is the continuous drawing scheme in which this process occurs, thus it is important to consider the factors affecting the drawing efficiency. Despite the data on SPD steels such as strength, plasticity and conductivity, obtained by classical methodologies, further investigations are needed: a key information is the residual stresses (RS) status, and RS determination is an essential issue to improve knowledge of SPD effects. In this work, 15 wires samples made of low-alloyed quality structural steel Grade 08G2S GOST 1050 with accumulated shear deformation - as result of rolling with shear of the metal ingot and conventional wire drawing - have been investigated by neutron diffraction (ND). Results provide substantial data helping to evaluate the effect of shear deformation on RS of the considered steel, as well as additional support to complement the information already achieved by using the other characterization methodologies. Knowledge of the RS status can help developing a lowcarbon wire drawing technology with needed manufacturability and efficiency, playing a decisive role in the debugging of material selection and engineering design requirements.
On the scientific utilisation of low power research reactors
Mikula, Pavol ; Strunz, Pavel
In our contribution we focus our attention on the scientific utilisation of the beam tubes at the low power research reactor LVR-15. Namely, it will be reported about the neutron scattering instrumentation development and the educational possibilities at the low power neutron sources. The feasibility of carrying out the methodology and instrumental development research at the low power neutron sources will be demonstrated on designs of several high resolution and good luminosity neutron scattering instruments exploiting Bragg diffraction optics. Some of them have been already realized e.g. for small angle neutron scattering studies or residual strain/stress measurements. As the mentioned instrumental development and testing can be carried out at the low power neutron sources, due to the much lower safety requirements in comparison with the medium and high flux sources, they offer excellent educational and training programmes in neutron scattering or imaging for students.
Phase transformations in modern titanium alloys
Šmilauerová, Jana ; Janeček, Miloš (advisor) ; Kalvoda, Ladislav (referee) ; Strunz, Pavel (referee)
This study deals with phase transformations in metastable β titanium alloys, focusing on the investigation of evolution of nanoparticles of thermodynamically metastable ω phase. For the purpose of this research, single crystals of two metastable β titanium alloys - LCB (Ti-6.8Mo-4.5Fe-1.5Al) and Ti-15Mo (in wt. %) - were grown in an optical floating zone furnace. It was established by differential scanning calorimetry that the phase transformations occurring in the material did not change significantly as a result of the single crystal growth process. Using single crystal X-ray diffraction, the shape and the size of ω particles were determined in a series of aged samples. The lattice parameters of ω particles and the β matrix, as well as the misfit between the two structures were calculated. The β phase was found to be locally deformed in compression around ω particles. Small-angle X-ray scattering (SAXS) experiments revealed a spatial ordering of ω particles in the β matrix in a disordered cubic array with the basis vectors along 100 β directions. The SAXS data also allowed the evaluation of the mean ω particle sizes and distances and confirmed that the ω particle growth obeys the t1/3 law following from the Lifshitz-Slyozov-Wagner theory. In situ SAXS performed during isothermal ageing at selected...
NANOSTRUCTURE CHARACTERIZATION OF IN738LC SUPERALLOY FATIGUED AT HIGH TEMPERATURE
Petrenec, M. ; Strunz, Pavel ; Gasser, U. ; Heczko, Milan ; Zálešák, J. ; Polák, Jaroslav
The nanostructure of Inconel 738LC Ni-superalloy strengthened by trimodal Y precipitates distribution was investigated after Low Cycle Fatigue (LFC) loading at temperature 700°C. Different microscopic techniques as Scanning Electron Microscope (SEM) equipped with STEM detectro, transmission Kikuchi diffraction in the SEM, transmission electron microscope (TEM) in the bright field mode and high resolution transmission electron mciroscopes (HRTEM) in STEM mode were used for the characterization and quantification of superalloy nanostructure. The characteristic morphology of y precipitates was examined by ex-situ and in-situ Small Angle Neutron Scattering (SANS) at high temperatures. All adopted microscopic techniques indicate that the morphology of y precipitates distributed in the y matrix as recived state corresponds to two types, i.e. large cuboid-like precipitates with the size around 670 nm, and the spherical precipitates with the diameter 52nm. After eh LCF tests at temperature 700°C, the ex-situ SANS measurement yielded addititonal scattering intensities coming from another small y precipitetes with estimated size up to 10nm.
NANOSTRUCTURE CHARACTERIZATION OF IN738LC SUPERALLOY FATIGUED AT HIGH TEMPERATURE
Petrenec, M. ; Strunz, Pavel ; Gasser, U. ; Heczko, Milan ; Zálešák, J. ; Polák, Jaroslav
The nanostructure of Inconel 738LC Ni-superalloy strengthened by trimodal γ’ precipitates distribution was investigated after Low Cycle Fatigue (LCF) loading at temperature 700°C. Different microscopic techniques as Scanning Electron Microscope (SEM) equipped with STEM detector, transmission Kikuchi diffraction in the SEM, transmission electron microscope (TEM) in the bright field mode and high resolution transmission electron microscopes in STEM mode were used for the characterization of nanostructure. The characteristic morphology of γ’ precipitates was examined by ex-situ and in-situ Small Angle Neutron Scattering (SANS) at high temperatures. All microscopic techniques indicate that the morphology of γ’ precipitates distributed in the γ matrix as received state corresponds to two types, i.e. large cuboid-like precipitates with the size around 670 nm, and the spherical precipitates with the diameter 52 nm. After the LCF tests at temperature 700°C, the ex-situ SANS measurement yielded additional scattering intensities coming from another small γ’ precipitates with estimated size up to 10 nm.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.