National Repository of Grey Literature 21 records found  1 - 10nextend  jump to record: Search took 0.00 seconds. 
Phase transformations in ultra-fine grained titanium alloys
Bartha, Kristina ; Stráský, Josef (advisor) ; Kalvoda, Ladislav (referee) ; Vojtěch, Dalibor (referee)
Title: Phase transformations in ultra-fine grained titanium alloys Author: Kristína Bartha Department: Department of Physics of Materials Supervisor of the doctoral thesis: PhDr. RNDr. Josef Stráský, Ph.D., Department of Physics of Materials Abstract: Ti15Mo alloy in a metastable β solution treated condition was processed by high pressure torsion (HPT) and equal channel angular pressing (ECAP). The microstructure after HPT is severely deformed and ultra-fine grained, while ECAP deformation results in rather coarse-grained structure with shear bands containing high density of lattice defects. Two types of thermal treatments - isothermal annealing and linear heating - were carried out for the solution treated condition and both deformed materials. Wide spectrum of experimental techniques was employed to elucidate the differences in phase transformations, especially in α phase precipitation, occurring in deformed and non-deformed material upon thermal treatment. It was shown that the α phase precipitation is accelerated in the deformed materials due to a high density of lattice defects, which provide a dense net of preferred sites for nucleation and also fast diffusion paths necessary for accelerated growth. The enhanced precipitation of the α phase in deformed materials also affects the stability of the ω...
Microstructure and mechanical properties of ultra-fine grained titanium alloys
Václavová, Kristína ; Stráský, Josef (advisor) ; Šíma, Vladimír (referee)
Title: Microstructure and mechanical properties of ultra-fine grained titanium alloys Author: Bc. Kristína Václavová Department / Institute: Department of Physics of Materials Supervisor of the master thesis: PhDr. RNDr. Josef Stráský, Ph.D. Abstract: Metastable β-Ti alloys Ti-15Mo and Ti-6.8Mo-4.5Fe-1.5Al (TIMETAL LCB) were subjected to severe plastic deformation by high pressure torsion. Microhardness of Ti-15Mo and TIMETAL LCB alloys increases with increasing inserted deformation, i.e. with increasing number of HPT rotations and also with increasing distance from the centre of the sample. The highest microhardness after HPT exceeds significantly the microhardness of two- phase α + β heat-treated material. Increasingly deformed microstructure was also demonstrated by scanning electron microscopy and by electron back-scatter diffraction. Significant twinning was observed in both studied alloys. Mechanism of multiple twinning contributes notably to the fragmentation of grains and thus to the refinement of the microstructure. Defect structure in Ti-15Mo alloy was studied by positron annihilation spectroscopy. It was proved that dislocations are the only detectable defects in the material by positron annihilation spectroscopy and that dislocation density increases with the number of HPT revolution and with...
Microstructure and mechanical properties of Ti15Mo alloy prepared by ECAP
Terynková, Anna ; Stráský, Josef (advisor) ; Šíma, Vladimír (referee)
In the bachelor thesis, mechanical properties and microstructure of Ti-15Mo alloy prepared by equal channel angular pressing were studied along with their dependence on the number of passes. Microhardness was studied by Vickers method, microstructure was studied by scanning electron microscopy and by electron back-scattered diffraction (EBSD). Finally, the elasticity modulus was measured by resonant ultra-sound spectroscopy. Mircohardness significantly increased after the first ECAP pass. After the second and the third pass it was almost constant and it again distinctly rose after the fourth pass. Grains with the size of hundreds of micrometres were observed in all samples. The volume fraction of twinned material increased with the number of passes. Deformation bands were also observed, namely in samples after two and three passes. Elastic modulus significantly increased with increasing deformation by ECAP and the evolution of elastic modulus is qualitatively similar to the evolution of microhardness. Considering that the material was processed by ECAP at 250řC, the omega phase may have formed during the processing. The increase of microhardness and elastic modulus can be explained by the increasing volume fraction of the omega phase.
Microstructure and Texture of Titanium Prepared by Powder Metallurgy
Kozlík, Jiří ; Stráský, Josef (advisor) ; Chráska, Tomáš (referee)
Bulk commercially pure titanium was prepared by powder metallurgy, namely by cryogenic milling and spark plasma sintering, with aim to produce ultra-fine grained material with enhanced strength. The microstructure of milled powders was investigated in detail by a novel method called transmission EBSD, which allowed the first direct observation of texture within the powder particles. This texture is similar to rolling texture, because of the similar nature of the defor- mation during milling. Microstructure observations revealed grains with the size under 100 nm. The influence of sintering parameters on material properties were studied by scan- ning electron microscopy including EBSD, X-ray diffraction and by microhardness measurements. The trade-off relationship between porosity and grain size was identified, fully dense material with ultra-fine grained microstructure could not be produced. Increased oxygen content was identified as a main strengthening factor, while porosity has significant deteriorating effect on mechanical properties. The texture of powder was retained in the bulk material. The possibility of stabilizing the microstructure by mechanical alloying of Ti with yttrium oxide nanoparticles was investigated with mixed results. The stabiliza- tion was successful, but several issues...
Oxygen-strengthened biomedical beta titanium alloys
Preisler, Dalibor ; Stráský, Josef (advisor) ; Kužel, Radomír (referee)
Oxygen strengthened biomedical beta titanium alloys Beta titanium alloy Ti-35Nb-6Ta-7Zr-0.7O (wt. %) exhibits a low Young's modulus and high strength thanks to interstitial strengthening effect of oxygen. These mechanical properties are promising for implant production. In this thesis, the aforementioned alloy is thoroughly studied in conditions prepared by various thermomechanical treatments, namely: material after casting, hot compression testing, die-forging, hot rolling and finally, cold-swaged and annealed condition. Mechanical properties and microstructure of prepared conditions are studied with special interest of enhancing the fatigue performance that is poor after casting due to porosity and large grains. The hot rolling was shown to improve the fatigue performance significantly, mainly through grain refinement. It is shown that by combining the effects of cold-swaging and recrystallization annealing, extensive refinement of grain structure can be achieved. Industrial aspects of implant production by the studied methods were discussed. In the second part of the thesis, the possibility of lowering the Young's modulus by reducing the beta phase stability (by reducing of Nb and Ta content), while retaining high strength caused by high interstitial oxyen content is explored. Several alloys were...
Morphology and hardness of particles of titanium powder prepared by cryogenic milling
Ibragimov, Ilya ; Stráský, Josef (advisor) ; Janeček, Miloš (referee)
The effect of cryogenic milling on morphology and microhardness of titanium powder was investigated. Initial powder of commercially pure titanium was subjected to cryogenic milling in liquid argon (LAr) using two different milling speeds. Prepared powders were subsequently cleaned by ethanol. The cleaning procedure was done in two ways: in the air and in the inert atmosphere in the glovebox. Particle size and morphology were investigated my scanning electron microscopy and subsequent automated image analysis. Microhardness of powder particles was determined by Vickers hardness measurement using small loads. The milling did not cause significant powder refiniment, while the shape of powder particles changes substantially. Milling speed affected particle shape and powder contamination. Application of stearic acid as the processing control agent prevented cold-welding of powder particles, but contaminated the powder by oxygen and hydrogen. Stearic acid could be successfully removed by cleaning in ethanol. The using of glovebox for cleaning did not have significant effect on the resultiing contamination.
Microstructure and mechanical properties of ultra-fine grained titanium alloys
Václavová, Kristína ; Stráský, Josef (advisor)
Title: Microstructure and mechanical properties of ultra-fine grained titanium alloys Author: Bc. Kristína Václavová Department / Institute: Department of Physics of Materials Supervisor of the master thesis: PhDr. RNDr. Josef Stráský, Ph.D. Abstract: Metastable β-Ti alloys Ti-15Mo and Ti-6.8Mo-4.5Fe-1.5Al (TIMETAL LCB) were subjected to severe plastic deformation by high pressure torsion. Microhardness of Ti-15Mo and TIMETAL LCB alloys increases with increasing inserted deformation, i.e. with increasing number of HPT rotations and also with increasing distance from the centre of the sample. The highest microhardness after HPT exceeds significantly the microhardness of two-phase α + β heat-treated material. Increasingly deformed microstructure was also demonstrated by scanning electron microscopy and by electron back-scattered diffraction (EBSD). Significant twinning was observed in both studied alloys. Mechanism of multiple twinning contributes notably to the fragmentation of grains and thus to the refinement of the microstructure. Defect structure in Ti-15Mo alloy was studied by positron annihilation spectroscopy. It was proved that dislocations are the only detectable defects in the material by positron annihilation spectroscopy and that dislocation density increases with the number of HPT revolution and...
Metastable beta titanium alloys for biomedical use
Preisler, Dalibor ; Stráský, Josef (advisor) ; Janeček, Miloš (referee)
In this work the effect of die-forging and annealing on the mechanical properties and microstructure of biocompatible metastable alloy Ti-35.3Nb-7.3Zr -5.7Ta-0.7O (wt. %) was studied. Light and scanning electron microscopy, microhardness tests and tensile tests were used to study all prepared conditions. As-cast and as-annealed conditions showed chemical inhomogeneities exhibited as dendritic structure, grains with size of hundreds of micrometers and numerous pores having size of units of micrometers. Precipitation of alpha phase particles was negligible in as-annelaed conditions and only grain boundary alpha paticles formed. Die-forged condition showed grain sizes in the wide range of hundreds of micrometers down to micrometers. Both as-annealed and die-forged conditions showed increased microhardness compared to as-cast condition, but there were no significant differences between different annealing conditions. Yield stress of 870 MPa was found for as-cast condition while as-forged condition exhibited even higher yield stress of 1120 MPa. In both conditions, good room-temperature ductility was demonstrated. Due to its high strength, this alloy is perspective for manufacturing of joint implants.
Titanium and titanium alloys prepared by cryogenic milling
Kozlík, Jiří ; Stráský, Josef (advisor) ; Janeček, Miloš (referee)
Ultra-fine grained materials are presently thoroughly investigated due to their enhanced mechanical properties. Cryogenic milling is one of the severe plastic deformation methods, which allow production of these materials. Titanium powder was processed by cryogenic milling in liquid nitrogen and argon and consequently consolidated via spark plasma sintering method. In this work, the influence of milling conditions (liquid nitrogen vs. liquid argon, material of balls, duration and speed of milling, usage of stearic acid) on size and shape of powder particles, contamination and mechanical properties was investigated. Particle size reduction was generally not observed, while their morphology changed significantly. Using liquid nitrogen as a cooling medium leads to strong contamination of prepared material and consequently to its hardening and embrittlement. Stearic acid supresses cold welding of particles during milling and enhances its efficiency. It is possible to eliminate stearic acid from powder by cleaning in acetone before sintering, to prevent contamination of processed material. Microhardness increased, depending on milling efficiency (in liquid argon), from original 178 HV to 200-300 HV range. Increase of yield and ultimate stength was observed in compression tests while maintaining ductility....

National Repository of Grey Literature : 21 records found   1 - 10nextend  jump to record:
See also: similar author names
2 Stráský, Jan
Interested in being notified about new results for this query?
Subscribe to the RSS feed.