Národní úložiště šedé literatury Nalezeno 6 záznamů.  Hledání trvalo 0.01 vteřin. 
Měření stability magnetického pole pomocí 40Ca+ iontu
Pham, Minh Tuan ; Lešundák, Adam ; Čížek, Martin ; Podhora, L. ; Řeřucha, Šimon ; Jedlička, Petr ; Slodička, L. ; Lazar, Josef ; Číp, Ondřej
Jedno z hlavních omezení při dlouhodobém měření absolutní frekvence hodinového přechodu je kolísání magnetického pole. Časově proměnlivá fluktuace vnějšího magnetického pole vede k frekvenčním posunům Zeemanových komponent a tím dochází ke snížení frekvenční stability optických hodin v čase. V současné době jsou obvykle optické atomové reference realizovány s pomocí jediného iontu. Škálování počtu iontů k vyšším hodnotám však přináší nesporný benefit ve formě vysokého poměru signálu a šumu a tím ke zefektivnění celého procesu měření. Ionty jsou v tomto případě roztaženy na velkou plochu a vytvářejí tzv. iontové Coulombovské krystaly. Kromě prostorové stability magnetického pole je pak při práci s Coulombovskými krystaly obzvláště důležitá i homogenita magnetického pole. Nadměrnou magnetickou perturbaci lze výrazně snížit překrytím sestavy magnetickým stíněním nebo použitím permanentních magnetů namísto konvenčně používaných magnetických cívek. Další metodou je průměrování na více hladinových přechodů. Tento příspěvek představuje jednoduchou metodu měření stability magnetického pole v poloze iontu.
Multipásmový vláknový polygon pro přenos přesného času a koherentní frekvence
Havliš, O. ; Vojtěch, J. ; Šlapák, M. ; Číp, Ondřej ; Čížek, Martin ; Hrabina, Jan ; Pravdová, Lenka ; Slodička, L.
Sdružení CESNET ve spolupráci s Ústavem přístrojové techniky akademií věd České republiky (Institute of Scientific Instruments of the CAS, zkr. ISI CAS), ČD Telematika a Univerzitou Palackého v Olomouci (UPOL) katedry optiky v rámci výzkumných aktivit vybudovaly multipásmový polygon na reálných optických trasách. Multipásmový polygon je určen pro obousměrný přenos ultra-stabilních veličin, tedy přenos přesného času a koherentní frekvence (T/F).
Výpočet průběhu potenciálů a simulace chování iontů vápníku v Paulově iontové pasti
Vadlejch, Daniel ; Oral, Martin ; Lešundák, Adam ; Pham, Minh Tuan ; Čížek, Martin ; Číp, Ondřej ; Slodička, L.
Přesnost experimentů prováděných zachycenými ionty uvnitř Paulovy lineární iontové pasty je velmi závislá na velikosti reziduálního pohybu iontů. Dva odlišné režimy radiofrekvenčního řízení elektrod se porovnávají s ohledem na velikost iontového mikromotoru ve směru osy pasti. Toto porovnání mikropohybu zachyceného iontu je prováděno numerickým výpočtem metodou konečných prvků pro geometrii, což odpovídá pasti umístěnému v laboratoři Ústavu vědeckých přístrojů AV ČR v Brně. Výsledky výpočtů ukazují, že symetrický režim řízení by měl být vhodnější pro oslabení axiální složky mikropohybu zachycených iontů.
Analysis of linear ion Paul traps using 3-D FEM and the azimuthal multipole expansion
Oral, Martin ; Číp, Ondřej ; Slodička, L.
Radiofrequency (RF) Paul traps are valuable in the design and in the operation of highly stable\noptical atomic clocks based on suitable trapped ions. The traditional setup involves a single\nion in an RF trap irradiated with a laser beam. The frequency of the laser light is then fine-tuned to match that of photons coming from an electronic transition in the atomic shell. The\nachievable frequency stability is about 10-17 for laser-cooled ions. However, the stability can be\nfurther improved by using heavy atoms (such as Thorium) and the more stable frequencies of\ntheir nuclear transitions, and by setting up so-called Coulomb crystals, to improve the frequency measurement statistics by increasing the number of reference atoms. These techniques and their combination could reach relative stabilities beyond 10-20.
Trapping and cooling of single ions for frequency metrology and quantum optics experiments
Slodička, L. ; Pham, Minh Tuan ; Lešundák, Adam ; Hucl, Václav ; Čížek, Martin ; Hrabina, Jan ; Řeřucha, Šimon ; Lazar, Josef ; Obšil, P. ; Filip, R. ; Číp, Ondřej
Single trapped ions trapped in Paul traps correspond to ideal candidates for realization of extremely accurate optical atomic clocks and practical studies of the light–atom interactions and nonlinear mechanical dynamics. These systems benefit from both, the superb isolation of the ion from surrounding environment and excellent control of its external and internal\ndegrees of freedom, at the same time, which makes them exquisite platforms for experimental studies and applications of light matter interaction at its most fundamental level. The exceptional degree of control of single or few ion's state enabled in past decade number of major advancements in the applications from the fields of experimental quantum information\nprocessing and frequency metrology, including recent realization of scalable Shor's\nalgorithm, fractional uncertainties of the frequency measurements close to 10-18 level, or simulations of complex quantum many-body effects. These results, together with the rapid advancements in the production of low-noise segmented micro-traps, promise prompt access to long-desired regimes of quantum optomechanics and further development and applications\nof optical atomic clocks.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.