Žádný přesný výsledek pro Shatyrko,, Andriy nebyl nalezen, zkusme místo něj použít Shatyrko Andriy ...
Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.03 vteřin. 
Optimization of Delayed Differential Systems by Lyapunov's Direct Method
Demchenko, Hanna ; Růžičková, Miroslava (oponent) ; Shatyrko,, Andriy (oponent) ; Diblík, Josef (vedoucí práce)
The present thesis deals with processes controlled by systems of delayed differential equations $$x'(t) =f(t,x_t,u),\,\,\,\, t\ge t_{0}$$ where $t_0 \in \mathbb{R}$, $f$ is defined on a subspace of $[t_0,\infty)\times {C}_{\tau}^{m}\times {\mathbb{R}}^r$, $m,r \in \mathbb{N}$, ${C}_{\tau}^{m}=C([-\tau,0],{\mathbb{R}}^{m})$, $\tau>0$, $x_t(\theta):=x(t+\theta)$, $\theta\in[-\tau,0]$, $x\colon [t_0-\tau,\infty)\to \mathbb{R}^{m}$. Under the assumption $f(t,\theta_m^*,\theta_r)=\theta_m$, where ${\theta}_m^*\in {C}_{\tau}^{m}$ is a zero vector-function, $\theta_r$ and $\theta_m$ are $r$ and $m$-dimensional zero vectors, a control function $u=u(t,x_t)$, $u\colon[t_0,\infty)\times {C}_{\tau}^{m}\to \mathbb{R}^{r}$, $u(t,{\theta}_m^*)=\theta_r$ is determined such that the zero solution $x(t)=\theta_m$, $t\ge t_{0}-\tau$ of the system is asymptotically stable and, for an arbitrary solution $x=x(t)$, the integral $$\int _{t_{0}}^{\infty}\omega \left(t,x_t,u(t,x_t)\right)\diff t,$$ where $\omega$ is a positive-definite functional, exists and attains its minimum value in a given sense. To solve this problem, Malkin's approach to ordinary differential systems is extended to delayed functional differential equations and Lyapunov's second method is applied. The results are illustrated by examples and applied to some classes of delayed linear differential equations.
Optimization of Delayed Differential Systems by Lyapunov's Direct Method
Demchenko, Hanna ; Růžičková, Miroslava (oponent) ; Shatyrko,, Andriy (oponent) ; Diblík, Josef (vedoucí práce)
The present thesis deals with processes controlled by systems of delayed differential equations $$x'(t) =f(t,x_t,u),\,\,\,\, t\ge t_{0}$$ where $t_0 \in \mathbb{R}$, $f$ is defined on a subspace of $[t_0,\infty)\times {C}_{\tau}^{m}\times {\mathbb{R}}^r$, $m,r \in \mathbb{N}$, ${C}_{\tau}^{m}=C([-\tau,0],{\mathbb{R}}^{m})$, $\tau>0$, $x_t(\theta):=x(t+\theta)$, $\theta\in[-\tau,0]$, $x\colon [t_0-\tau,\infty)\to \mathbb{R}^{m}$. Under the assumption $f(t,\theta_m^*,\theta_r)=\theta_m$, where ${\theta}_m^*\in {C}_{\tau}^{m}$ is a zero vector-function, $\theta_r$ and $\theta_m$ are $r$ and $m$-dimensional zero vectors, a control function $u=u(t,x_t)$, $u\colon[t_0,\infty)\times {C}_{\tau}^{m}\to \mathbb{R}^{r}$, $u(t,{\theta}_m^*)=\theta_r$ is determined such that the zero solution $x(t)=\theta_m$, $t\ge t_{0}-\tau$ of the system is asymptotically stable and, for an arbitrary solution $x=x(t)$, the integral $$\int _{t_{0}}^{\infty}\omega \left(t,x_t,u(t,x_t)\right)\diff t,$$ where $\omega$ is a positive-definite functional, exists and attains its minimum value in a given sense. To solve this problem, Malkin's approach to ordinary differential systems is extended to delayed functional differential equations and Lyapunov's second method is applied. The results are illustrated by examples and applied to some classes of delayed linear differential equations.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.