National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
In-situ compression test of artificial bone foams in controlled environment using X-Ray micro-computed tomography
Glinz, J. ; Kytýř, Daniel ; Fíla, Tomáš ; Šleichrt, Jan ; Schrempf, A. ; Fürst, D. ; Kastner, J. ; Senck, S.
X-RayMicro-computed tomography (XCT) has already become a standard method for investigations of bone and bone replacement materials in medical research. For an in-depth characterization of histomorphometric features, digital volume data acquired by XCT can be processed and visualized three dimensionally to determine parameters such as bone volume fraction, cortical thickness and porosity. In this study, we investigated specimens of artificial bone foams, developed by the research group for surgical simulators at the UAS Linz, which are used to mimic the haptic feedback of physiologic and pathologic bone for more realistic surgery training. Similar specimen of artificial bone foam in a dry state have already been characterized precisely in [1]. However, since physiological bone typically is in a wet state, the main purpose of this study was the investigation of the influence of environmental conditions on artificial bone foams of varying composition. Thus, specimens with two kinds of mineral filler material as well as different amounts of foaming agent were prepared and tested in an in-situ loading stage developed by the ITAM CAS. In this stage, specimens can be immersed in liquid and tested under temperature-controlled conditions. Consequently, a total amount of 12 specimens was subjected to compression loading; half of them immersed in water at 36.5◦C and half in dry condition. Results showed that there is no significant influence of liquid immersion to the compression outcome. However, foams with less amount of foaming agent appeared to have smaller pores resulting in higher compression strength. Different types of mineral filler material also showed no significant influence on compression strength. Furthermore, a time-lapse in-situ investigation with XCT scans in-between the load steps was performed for one specimen immersed in water to investigate behavior during load. Despite of the open porous morphology of the foam, water immersed only partially into the foam, leaving pores closer to the center unfilled. Concluding, the usage of the artificial bone foams investigated is despite their physiologically wet condition also valid in a dry state since environmental differences are nonessential for their mechanical properties.
Basic biomechanical characterization of polyurethane based artificial cancellous structures
Šleichrt, Jan ; Kytýř, Daniel ; Pithartová, Kateřina ; Senck, S. ; Fürst, D. ; Schrempf, A.
The main goal of this study is to validate elementary mechanical parameters of a newly designed open-cell foam. The purpouse for investigating artificial material is to approach the properties of the human bone in the case of its adequate replacement. Investigated material can be also used as an artificial bone to train surgical procedures and to improve the skills of the surgeons. Four sets of the foam with different chemical composition were subjected to an uniaxial quasi-static loading to describe basic mechanical behaviour of these samples. Based on these experiments, the stress-strain diagrams were created as a comparative tool including calculation of the effective Young’s modulus. The acquired knowledges will be used as input parameters of a follow-up study aimed at describing the morphology of presented structures and their response to mechanical experiments. A distortion effect of porosity on the results is not considered in this study.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.