National Repository of Grey Literature 82 records found  1 - 10nextend  jump to record: Search took 0.00 seconds. 
An experimental investigation of yield surfaces anisotropies
Štefan, Jan ; Parma, Slavomír ; Marek, René ; Plešek, Jiří ; Feigenbaum, H. P. ; Ciocanel, C.
This contribution is dedicated to a rigorous experimental procedure for evaluation of yield surfaces of common metallic materials. This yield surface tracing procedure employs thin-walled tubular specimens to identify individual yield points of the material under arbitrary combinations of axial load and torque. A yield point is identified on the basis of a prescribed threshold for the effective plastic strain that is being continuously and fully automatically evaluated throughout the test. The experimental results generated with this tracing method are promising, leading to shapes of the yield surfaces conform with the von Mises criterion. The proposed methodology can effectively capture the YS shape.
Finite element implementation of creep constitutive model including transient effects
Gabriel, Dušan ; Masák, Jan ; Plešek, Jiří ; Kloc, Luboš ; Dymáček, Petr
A complex creep constitutive model including transient effects was implemented in the finite element code PMD (Package for Machine Design). The material model for P-91-type creep-resistant steel together with computer implementation was verified by means of uniaxial stress loadings. Testing bar was discretized by the finite element method (FEM) and loaded with uniaxial stresses and constant temperatures that were used to demonstrate the analytical solutions in original paper.
Recent progress in numerical methods for explicit finite element analysis
Kolman, Radek ; Kopačka, Ján ; Gonzalez, J. ; Gabriel, Dušan ; Cho, S.S. ; Plešek, Jiří ; Park, K.C.
In this paper, a recent progress in explicit finite element analysis is discussed. Properties and behaviour of classical explicit time integration in finite element analysis of elastic wave propagation and contact-impact problems based on penalty method in contact-impact problems are summarized. Further, stability properties of explicit time scheme and the penalty method as well as existence of spurious oscillations in transient dynamics are mentioned. The novel and recent improving and progress in explicit analysis based on a local time integration with pullback interpolation for different local stable time step sizes, bipenalty stabilization for enforcing of contact constrains with preserving of stability limit for contact-free problems and using a direct inversion of mass matrix are presented. Properties of the employed methods are shown for one-dimensional cases of wave propagation and contact-impact problems.
Computational time reversal method based on finite element method: influence of temperature
Mračko, Michal ; Kolman, Radek ; Kober, Jan ; Převorovský, Zdeněk ; Plešek, Jiří
Time reversal method is used to focus elastic waves to the location of the original source and reconstruct its source time function. The procedure consists of two steps: Frontal task and Reversal task. In the Frontal task, the medium is excited by an arbitrary source, elastic waves propagate through a body of interest and the dynamic response at few points on boundary is recorded. In the second step (say the Reversal task) the response signal is reversed in time and transmitted back into the medium resulting in focusing in the original source location. It is of practical importance to investigate a case when the medium changes its properties between the frontal and reversal wave propagation steps. An example is a problem of transferring experimentally recorded data to a computational model, where discrepancies in geometry, elastic properties and boundary conditions are expected. Our motivation is to develop a methodology for computation of time reversal problems in commercial finite element software. The results prove that this method is extremely sensitive to the change of temperature and one have to pay special attention to tuning of elastic parameters relevant to the\nexperiment.
Development, assessment and verification of finite element procedures for contact problems
Gabriel, Dušan ; Kopačka, Ján ; Masák, Jan ; Plešek, Jiří
A frictionless three-dimensional contact algorithm based on the pre-discretization penalty formulation was proposed. The algorithm proved to be robust, accurate and symmetry preserving—no master/slave surfaces have been introduced. It was implemented in the finite element code PMD (Package for Machine Design) for the solution of complex engineering problems. The capability of the algorithm was demonstrated in creep analysis of T-piece of the steam distributor of the CHEMOPETROL heating plant T200. Material properties were described by the probabilistic exponential model with damage. The purpose of the analysis was to compare the original version and the proposed design modification applied to one of T-pieces of the distributor when the proposed contact algorithm was employed to simulate the interaction between the collar and the pipe.
On finite element modelling in time reversal problems
Mračko, Michal ; Kober, Jan ; Kolman, Radek ; Převorovský, Zdeněk ; Plešek, Jiří ; Masák, Jan ; Kruisová, Alena
In this paper we analyse suitability and accuracy of computational techniques in time reversal applications based on finite element method (FEM) for detection and localization of defects, cracks or other acoustic emission sources in bodies and structures. As it is known, a classical explicit integration scheme - central difference is reversible. The central difference scheme as a time integrator is widely used for linear and nonlinear finite element analyses and it is also implemented in commercial and open-source finite element software. In the paper properties of the explicit FEM in time reversal problems are studied and analysed. We use the standard Galerkin FEM formulation with linear shape functions, one-point Gauss integration and lumped mass matrix. Loading by the Ricker pulse was applied for modelling of the acoustic source in an elastic square domain. A special attention is paid to the choice of boundary conditions in reverse problem which keep the reversibility of problems of interest. Finally, we show the quality of refocusing of the original acoustic source.
Greep analysis of-piece of the steam distributor
Gabriel, Dušan ; Masák, Jan ; Plešek, Jiří
The finite element analysis of the steam distributor of the CHEMOPETROL heating plant T200 was analyzed under creep conditions. Material properties were described by the probabilistic exponential model with damage. The purpose of the analysis was to compare the original version and the proposed design modification applied to one of T-pieces of the distributor when the original contact algorithm was employed to simulate the interaction between the collar and the pipe.
Creep analysis of HP inner casing DSPWR – contact task
Kopačka, Ján ; Masák, Jan ; Gabriel, Dušan ; Plešek, Jiří
The report summarizes results of the 3rd stage of the creep analysis of Doosan Škoda Power high-pressure inner casing. An analysis of the high-pressure inner casing is carried out with respect to the contact boundary conditions in the division plane and the use of a complex creep material model. The results of the PMD contact analysis are compared to the measured values and also compared with the ANSYS program where the Norton-Bailey model of creep was used.
Explicit dynamic finite element analysis of a firing pin assembly
Mochar, Dominik ; Gabriel, Dušan ; Masák, Jan ; Kopačka, Ján ; Kolman, Radek ; Plešek, Jiří ; Hynek, P. ; Vtípil, J.
In this paper, explicit dynamic finite element analysis of a firing pin assembly was performed. Two different geometries of the firing pin were considered using the finite element software PMD and Abaqus. For both variants there was evaluated a stress distribution at the critical point of a tested component, that is going to be later used for a fatigue analysis of the firing pin.
Special eigenvalue problems for symmetric sparse matrices related to electronic structure calculations
Novák, Matyáš ; Tůma, Miroslav (advisor) ; Plešek, Jiří (referee)
Ab-initio methods for calculating electronic structure represent an important field of material physics. The aim of this theses - within the project focused on developing the new method for calculating electronic states in non-periodic structures based on density functional theory, pseudopotentials, and finite elements methods - is to convert Kohn-Sham equations into the form suitable for discretisation, to suggest apropriate method for solving generalized eigenproblem resulting from this discretisation and to implement an eigenvalue solver (or to modify existing one). The thesis describes a procedure for converting the many-particle Schrödinger equation into generalized rank-k-update eigenvalue problem and discusses various methods for its solution. Eigensolver Blzpack, which makes use of the block Lanczos method, has been modified, integrated into the Sfepy framework (a tool for the finite element method calculation) and resulting code has been successfully tested.

National Repository of Grey Literature : 82 records found   1 - 10nextend  jump to record:
See also: similar author names
1 Plešek, J.
1 Plešek, Jan
Interested in being notified about new results for this query?
Subscribe to the RSS feed.