Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.01 vteřin. 
Polarization properties of bow shock sources close to the Galactic centre
Zajaček, M. ; Karas, Vladimír ; Hosseini, E. ; Eckart, A. ; Shahzamanian, B. ; Valencia-S, M. ; Peissker, F. ; Busch, G. ; Britzen, S. ; Zensus, J. A.
Several bow shock sources were detected and resolved in the innermost parsec from the supermassive black hole in the Galactic centre. They show several distinct characteristics, including an excess towards mid-infrared wavelengths and a significant linear polarization as well as a characteristic prolonged bow-shock shape. These features give hints about the presence of a non-spherical dusty envelope generated\nby the bow shock. The Dusty S-cluster Object (also denoted as G2) shows similar characteristics and it is a candidate for the closest bow shock with a detected proper motion in the vicinity of Sgr A*, with the pericentre distance of only approx. 2000 Schwarzschild radii. However, in the continuum emission it is a point-like source and hence we use Monte Carlo radiative transfer modeling to reveal its possible three-dimensional structure. Alongside the spectral energy distribution, the detection of polarized continuum emission in the near-infrared Ks-band (2.2 micrometers) puts additional constraints on the geometry of the source.
Infrared-excess Source DSO/G2 Near the Galactic Center: Theory vs. Observations
Zajaček, M. ; Eckart, A. ; Peissker, F. ; Karssen, G. ; Karas, Vladimír
Based on the monitoring of the Dusty S-cluster Object (DSO/G2) during its closest approach to the Galactic Center supermassive black hole in 2014 and 2015 with ESO VLT/SINFONI, we further explore the model of a young, accreting star to explain observed spectral and morphological features. The stellar scenario is supported by our ndings, i.e., ionized-hydrogen emission from the DSO that remains spatially compact before and after the peribothron passage. The detection of DSO/G2 object as a compact single-peak emission-line source is not consistent with the original hypothesis of a core-less cloud that is necessarily tidally stretched, hence producing a double-peak emission line prole around the pericentre passage. This strengthens the evidence that the DSO/G2 source is a dust-enshrouded young star that appears to be in an accretion phase. The infall of material from the circumstellar disc onto the stellar surface can contribute signicantly to the emission of Br line as well as the observed large line width of the order of 10 angstrom.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.