National Repository of Grey Literature 103 records found  1 - 10nextend  jump to record: Search took 0.00 seconds. 
Characterization of bacterial strains obtained in evolutionary engineering
Chatrná, Vendula ; Sedláček, Petr (referee) ; Obruča, Stanislav (advisor)
This diploma thesis deals with application of evolutionary engineering on PHA producing bacterial strains. Two bacterial strains, Cupriavidus necator H16 and Halomonas halophila, were chosen for the evolutionary experiments. Copper cations (Cu2+) and sodium chloride (NaCl) were chosen as the selective pressure for C. necator H16; acetic acid (AA) and levulinic acid (LA) for Halomonas halophila. The adapted strains were during long-time evolutionary experiments characterized by GC-FID and SEC-MALS. The growth of the adapted strains was studied by the mean of optical density measurement. The amount of viable cells was determined by spectral FC after their expositon to selected stress factors. Specific enzyme activities of enzymes involved in citrate and glyoxalate cycle, enzymes generating NADPH, LA metabolism enzyme and PHA biosynthesis enzymes were determined. The adapted strains were compared with the wild-type of strains. The successfull adaptation of C. necator H16 adapted to Cu2+ was detected. Biomass and PHA production of both wild and adapted H. halophila strains cultivated in lignocellulosis waste were determined. It was found out that H. halophila adapted to the LA is capable of producing more PHA than the wild strain of this bacteria.
Isolation, characterization and application of biomedically important polymer P(3HB-co-4HB)
Krupičková, Kristýna ; Přikryl, Radek (referee) ; Obruča, Stanislav (advisor)
This diploma thesis deals with the isolation and characterization of copolymer P(3HB-co-4HB). The teoretical part was prepared as a literature search which describe polyhydroxyalkanoates in general, their structure, synthesis, degradation and isolation. Furthermore, copolymers containing 4HB units are mentioned in this thesis and there is also no mentioned of the biosynthesis and biodegradation of copolymer P(3HB-co-4HB). The first aim of this diploma thesis was to find out which solvent is the best for copolymer extraction and then characterize obtained copolymer P(3HB-co-4HB). The isolated copolymer was characterized by gas chromatography, SEC-MALS, thermal analysis and SEM. In the second part of the thesis, release of model biologically active substance from the PHA films was studied. Rhodamine 6G dye was selected for the simulation, which was used to stain the copolymer films and the P(3HB) films. It was observed that film prepared from P(3HB-co-4HB) copolymer released entrapped substance much faster than film made from P3HB homopolymer, and, in addition, the copolymer was substantially more susceptible to enzyme degradation.
Molecular characterization of selected PHA producers
Kubáčková, Eliška ; Brázda, Václav (referee) ; Obruča, Stanislav (advisor)
This diploma thesis focuses on the molecular characterization of selected PHA producers. Within this work, the PHA producing thermophilic isolates originating from the samples of activated sludge and compost were identified and characterized using molecular biological methods. By sequencing the 16S rRNA gene, the thermophilic isolates were identified and taxonomically classified into the Firmicutes bacterial phylum. In these bacterial isolates, the ability to produce PHA at the genotype level was determined by conventional PCR detection of the phaC gene encoding PHA synthase, which is a key enzyme in PHA biosynthesis. Class I, II and IV PHA synthases were detected in most of the isolated bacteria, wherein class I and II PHA synthases are not characteristic for these bacterial genera. The largest proportion of isolates was identified for the species of thermophilic bacterium Aneurinibacillus thermoaerophilus, in which class IV PHA synthase was detected. In the second part of the diploma thesis, the RT-qPCR method was implemented to study the expression of selected genes of the bacterium Cupriavidus necator H16 involved in PHA metabolism. As part of the implementation of this method, PCR-based detection of selected genes was optimized and quantification of genes using real-time PCR was performed. The tested method included steps of RNA isolation, cDNA synthesis and quantification of gene segments for which the critical points of the method were determined based on the obtained data.
Biodegradation of bioplasts in compost environment
Vodička, Juraj ; Kovalčík, Adriána (referee) ; Obruča, Stanislav (advisor)
This master’s thesis focuses on biodegradation of polyhydroxybutyrate (PHB) and polylactic acid (PLA). The theoretical part discusses an origin, properties and applications of investigated biopolyesters, and so the enzymology of their biodegradation. The experimental part deals with biodegradation of these polymers in liquid medium using several pure thermophilic bacteial strains and controlled composting of these bioplastics. Amongst six tested thermophilic bacterial strains only one showed PHB-biodegradation activity – strain Schlegelella thermodepolymerans. No degradation degree of amorphous or semi-crystalline PLA was observed. Mainly disintegration of both forms of PLA articles was observed in compost environment, thus the abiotic mechanism of its decomposition was indicated. After 4 weeks of composting, the relative weight loss of 99 % and 63 % was detected in amorphous and semi-crystalline PLA respectively. On the contrary, the weight loss of PHB after 4 weeks of composting reached 36 %, moreover, a half decrease of molar mass was observed using SEC. The surface erosive mechanism of PHB-biodegradation was stated using SEM. By monitoring of esterase, lipase and protease activities, no influence on the compost by polymer presence was concluded at statistical significance.
Metabolism of Bacterial Cells and the Effect of Stress on Biosynthesis of PHA
Kučera, Dan ; Kráčmar, Stanislav (referee) ; Ondrejovič,, Miroslav (referee) ; Obruča, Stanislav (advisor)
This thesis deals with the study of polyhydroxyalkanoate biosynthesis as a microbial product with the potential to replace current conventional plastics made from petroleum. The dissertation thesis is elaborated in the form of a discussed set of already published publications, which are then part of the thesis in the form of appendices. The work builds on relatively extensive knowledge in the field of polyhydroxyalkanoate production and brings new facts and possible strategies. Various possibilities of analysis of polyhydroxyalkanoates using modern methods were tested in this work, which brings especially speed, which can be crucial in real-time evaluation of production biotechnological process. Raman spectroscopy has proven to be a very promising technique for rapid quantification of PHA. Furthermore, the work deals with valorisation of waste of food and agricultural origin. Emphasis is placed on methods of detoxification of lignocellulose hydrolysates. In this context, adsorption of inhibitors to lignin was first used as an alternative to other detoxification techniques. Due to detoxification, selected production strains Burkholederia cepacia and B. sacchari were able to utilize softwood hydrolyzate for PHA production. In the next part of the work was also tested the possibility of using chicken feathers as a complex source of nitrogen. Evolutionary engineering was also used as a possible strategy to eliminate the inhibitory effect of levulic acid as a microbial inhibitor that results from the hydrolysis of lignocellulosic materials. Adaptation experiments were used to develop strains exhibiting higher resistance to levulic acid and the ability to accumulate a higher 3HV copolymer from the original wild-type C. necator strain. Another promising approach tested in the work was the use of extremophilic microbial strain, which leads to a reduction in the cost of biotechnological production. Selected Halomonas species have shown high potential as halophilic PHA producers. The final part of the thesis was devoted to the selection of the production strain with regard to the properties of the resulting PHA. The Cupriavidus malaysiensis strain was selected to produce a P(3HB-co-3HV-co-4HB) terpolymer which revealed significant differences in material properties over P3HB.
DNA Isolation and Analysis Focused on Microorganisms Important in Food Production
Čutová, Michaela ; Obruča, Stanislav (referee) ; Fojtová,, Miloslava (referee) ; Brázda, Václav (advisor)
Identification of bacterial DNA consists from several steps: cell lysis, isolation and purification of DNA, precipitation by ethanol, identification of bacterial strain by PCR or other molecular biology methods. Each step must be optimised. Nucleic acids can be isolated from cells using magnetic particles. The molecules of DNA are bound to the surface of magnetic carriers by electrostatic interaction, and then they are eluted into buffer. The aim of the work will be to optimize individual steps of identification of bacterial DNA: cell lysis, DNA isolation, characterization of solid magnetic carriers functionalized by amino groups for nucleic acids isolation. The presence of DNA will be verified using agarose gel electrophoresis and the amount of eluted DNA will be determined spectrophotometrically. The quality of isolated DNA will be proved by their amplification using polymerase chain reaction (PCR). Furthermore, the thesis focuses on the study of secondary structures of nucleic acids – cruciforms structures and quadruplexes. These structures are involved in the regulation of cellular processes and their appearance is associated with cancer development and neurodegenerative diseases. In silico genome analysis was performed on important food industry microorganisms. The microorganisms genomic sequences were obtained from the NCBI (National Center for Biotechnology) database. The Palindrome Analyzer and G4 Hunter software were used for the analysis.
Evolutionary engineering of PHA producing bacterium Halomonas halophila
Ikrényiová, Terézia ; Kovalčík, Adriána (referee) ; Obruča, Stanislav (advisor)
This bachelor thesis deals with evolutionary engineering of PHA producing bacteria, the principle of PHA production and solution of this production’s disadvantages, but also applications of these biopolymers in the theoretical part. The production of polyhydroxyalkanoates by bacteria Halomonas halophila, which is focused on gaining the maximus amount of 3-hydroxyvalerate in formed copolymer, is described in the experimental part. The precursor valeric acid was added to bacteria due to gain the amount of 3HV. It was found that the concentrations over 3 g/l aren´t usable for production sufficient concentration of PHA. The very low concentrations of valeric acid led to low amount of 3HV in PHA. The available concentration of this precursor for production sufficient concentration of PHA by bacterial cell is 3 g/l. Moreover, it was found that the valeric acid should be added after 24 hours of cultivation in mineral production medium. The thesis is also concentred on comparison the original bacterial strains of Halomonas halophila to strains, which were adapted on valeric acid as stress factor for bacteria. The assumption, that the adapted strains can better utilize valeric acid and the incorporation to copolymer of it is higher like the original strains, was affirmed.
Isolation of PHA producing bacteria from mixed microbial consortia
Plachý, Petr ; Kučera, Dan (referee) ; Obruča, Stanislav (advisor)
Aim of this bachelor thesis is detection of polyhydroxyalcanoates (PHA) producing bacteria from activated sludge and effort for isolation of these bacteria. The theoretical part deals with general issues of PHA and of bacterial production of PHA. Also there is attention paid to characterization of activated sludge and to selected methods used in this thesis for detection of PHA producing bacteria. In the experimental part, mixed microbial culture of the activated sludge was cultivated on different carbon sources. Potential PHA producers was isolated from these cultures with the use of lipophilic staining with Nile red and phaC gene (essential for PHA synthesis) was detected with the use of polymerase chain reaction (PCR) in 11 of the isolated cultures. By DNA sequencing 8 bacterial cultures were identified. It was Klebsiella pneumoniae (1 x), Paenirhodobacter enshiensis (1 x) and Pseudomonas putida (6 x). Presence of PHA in biomass was detected in 2 of the 11 isolated cultures by Fourier transformation infrared spectroscopy (FTIR) analysis. The content of polyhydroxybutyrate (PHB) was determined with the use of gas chromatography to 9,33 % of dry biomass (Paenirhodobacter enshiensis) and to 1,18 % (unidentified culture).
Evaluation of grape pomace as carbon source for bacterial cellulose production
Stříž, Radim ; Obruča, Stanislav (referee) ; Kovalčík, Adriána (advisor)
This bachelor thesis is focused on the production of bacterial cellulose by Gluconacetobacter xylinus. The theoretical part consists of a brief description of G. xylinus, properties and uses of bacterial cellulose. Firstly, the experimental part focuses on optimization of production of bacterial cellulose by G. xylinus CCM 4611. This optimization was focused on pH value, a cultivation type, and used carbon source for production. The optimal pH was 6.5. The carbon source showing the highest production of bacterial cellulose was mannose for the dynamic production and saccharose for the static production of bacterial cellulose. The second part of the experimental part focuses on a comparison of two methods for assaying reducing sugars – Somogyi-Nelson (SN) assay and dinitrosalicylic acid (DNS) assay. The comparison of two above mentioned methods showed that the results obtained by the SN method were very close to High performance liquid chromatography (HPLC) data. It can be concluded that HPLC method is the best method if we need to know the type of sugars but if we need only the quick determination of the sum of the reduction sugars, SN method is very suitable. 4 It can be concluded that the Moravian region produces a large amount of winery biomass. Therefore, the use of the pomace extract as a carbon source for the production of bacterial cellulose seems to be interesting mainly from the point of the recirculation economy. The obtained results showed that the grape sugar extract could be used, and from the production values, it is even more suitable for the production of bacterial cellulose than industrial sugars.
Use of Molecular Biology Techniques for Identification and Analysis of Probiotic Bacteria
Konečná, Jana ; Doškař, Jiří (referee) ; Kráčmar, Stanislav (referee) ; Obruča, Stanislav (advisor)
Isolation of deoxyribonucleic acid (DNA) is an important step in the molecular diagnostics of microorganisms. A high quality of isolated DNA is necessary for DNA amplification by the polymerase chain reaction (PCR). The conventional DNA isolation using phenol-chloroform extraction and DNA precipitation in ethanol is time-consuming and requires the use of toxic phenol. Alternative method of DNA isolation is use of commercially available kits which, however, are expensive and their efficiency is low. Magnetic separation techniques using magnetic solid particles are one of modern methods to speed up the nucleic acids isolation. The aim of this work was to use two different types of magnetic particles for solid-phase DNA extraction. Magnetic microparticles P(HEMA – co – GMA) containing –NH2 group and nanoparticles PLL, whitch contains polylysine. The amounts of DNA in separation mixtures were measured using ultraviolet spectrophotometry (UV). The first experimental conditions were tested on chicken erythrocytes DNA. Phosphate buffer (pH 7, 7.6 and 8) was used for adsorption of DNA on magnetic particles. It was shown that approximately almost one half of DNA was adsorbed on the particles. The elution conditions of DNA were also optimized. Secondly, bacterial DNA was tested. After optimalization, the developed method was used for DNA isolation from real food supplements. This DNA eluted from the particles was in PCR ready quality. High resolution melting (HRM) curve analysis is a simple, low-cost method for amplicon discrimination and easy connection with real-time polymerase chain reaction (PCR). In this thesis, we report rapid species identification of strains belonging to the Lactobacillus group using HRM-PCR. Three different DNA isolation methods were used in this work: phenol extraction, separation using magnetic particles and commercial kit. Ten sets of targeted gene fragments primers (LAC1 – LAC2, LAC2 – LAC4, P1V1 – P2V1, Gro F – Gro R, 3BA-338f – Primer 1, V1F – V1R, CHAU - V3F – CHAU - V3R, CHAU - V6F – CHAU - V6R, poxcDNAFw – poxPromRVC, poxcDNAFw – poxPromRVT) were tested for amplification of the 16S rRNA gene. Use of GroF/R and LAC2/4 primers pairs successfully identify strains belong to the Lactobacillus group. The variance between used extraction methods for evidence of HRM curves was found.

National Repository of Grey Literature : 103 records found   1 - 10nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.