National Repository of Grey Literature 44 records found  1 - 10nextend  jump to record: Search took 0.00 seconds. 
Thermomechanical and Isothermical Fatigue of Surface Treated Nickel Superalloys
Šulák, Ivo ; Pantělejev, Libor (referee) ; Polák, Jaroslav (referee) ; Obrtlík, Karel (advisor)
Yttria-stabilized zirconia-based thermal barrier coating systems are the most widely used commercial coatings in the industry, with practical applications in aircraft engines and land-based power turbines. The purpose of thermal barriers is primarily to protect the substrate from high temperatures and also to increase its oxidation resistance. Currently, concerning the relatively frequent volcanic eruptions and increasing air traffic intensity in desert areas, increased attention is being paid to the development of new thermal and environmental coatings that will withstand the so-called CMAS attack and still successfully meeting the strictest requirements of the aerospace industry. Two newly developed experimental coatings consisting of three successive layers have been developed for this work. The upper two layers are thermal insulating ceramic coatings, where two different uppermost coatings were deposited. The first uppermost layer of the coating is a mixture of mullite and hexacelsian in a ratio of 70/30 wt. %. The second upper most type of coating consists of Al6Si2O13 + MgAl2O4 + BaCO3 in a ratio of 6:3:1 wt. %. The interlayer is made of the commercially utilized yttria-stabilized zirconia. The metallic CoNiCrAlY coating, which is directly deposited on the nickel-based superalloy MAR-M247, fulfils a compensatory function between the mechanical properties of the nickel superalloy and the ceramic coating. The thermal and environmental barrier system was deposited using air plasma spraying (APS) technology. The main objective of this work was to evaluate the effect of the newly developed thermal and environmental barrier coating, which has a high potential for the protection of component surfaces in an aggressive environment, on isothermical and thermomechanical fatigue behaviour of nickel-based superalloy MAR-M247. Low cycle fatigue tests were performed in strain control mode with constant strain amplitude on both uncoated and TEBC coated superalloy. Fatigue hardening/softening curves, cyclic stress-strain curves and fatigue life curves in the representation of total strain amplitude, plastic strain amplitude and stress amplitude on the number of cycles to failure were obtained. Microstructural analysis of MAR-M247 superalloy and a newly developed experimental coating was performed in a scanning electron microscope. The fatigue crack initiation sites were identified and the process of fatigue crack propagation was described. The dislocation arrangement after fatigue loading of MAR-M247 was investigated in a transmission electron microscope. The findings of isothermical and thermomechanical low cycle fatigue behaviour of uncoated and TEBC coated MAR-M247 superalloy and identification of damage mechanisms presented in this dissertation will improve the estimation of safe-life that is particularly relevant to aircraft engines components.
Short Crack Growth in Materials for High Temperature Applications
Mazánová, Veronika ; Obrtlík, Karel (referee) ; Krupp, habil Ulrich (referee) ; Polák, Jaroslav (advisor)
Pokročilá vysoce legovaná austenitická nerezová ocel Sanicro 25 s Fe-Ni-Cr matricí byla studována za podmínek nízkocyklové únavy za pokojové a vysoké teploty 700 °C. Široká škála moderních experimentálních technik byla použita ke studiu vzájemně souvisejících efektů chemického složení slitiny, mikrostrukturních změn a deformačních mechanismů, které určují odolnost materiálu vůči poškození. Hlavní úsilí bylo zaměřeno na studium iniciace únavových trhlin a růstu krátkých trhlin, tedy dvě stádia, která hrají zásadní roli ve výsledné celkové délce únavového života materiálu v provozu. • Vnitřní deformační mechanismy byly korelovány s vývojem povrchového reliéfu, který je pozorován ve formě persistentních skluzových stop na povrchu. Bylo zjištěno, že vysoce planární charakter dislokačního skluzu způsobuje vysokou lokalizaci cyklické plastické deformace do persistentních skluzových pásů, což v důsledku vede k nukleaci “Stage I” trhlin, která je spojena s přítomností persistentních skluzových stop na povrchu ve všech studovaných vzorcích. Bylo zjištěno, že praskání dvojčatových hraníc je taktéž spojeno s přítomností persistentních skluzových stop podél povrchové stopy dvojčatové roviny. • Interkrystalická iniciace únavové trhliny byla pozorována pouze zřídka, a to za podmínek zatěžování amplitudami vysoké deformace. Bylo zjištěno že interkrystalická iniciace je spojena s přítomností persistentních skluzových stop na hranicích zrn. Hranice zrn praskají za podmínek externího tahového zatížení zejména z důvodu vysokého počtu nekompatibilit na hranicích zrn, které jsou způsobené tvarem persistentních skluzových stop. • Mechanismy růstu přirozených krátkých trhlin byly studovány na vzorcích vystavených nízkocyklove únava s nízkou i vysokou deformací. Role mikrostruktury byla analyzována pomocí experimentálních technik a diskutována. • Rychlosti šíření nejdelších trhlin byly měřeny na vzorcích s mělkým vrubem. Výsledky byly analyzovány použitím přístupů lomové mechaniky založených na amplitudě KI a J-integrálu stejně jako na amplitudě plastické deformace. Všechny přístupy byly diskutovány v souvislosti s Mansonovými-Coffinovými křivkami únavové životnosti. Jednoduchý mocninový zákon růstu krátkých trhlin založený na amplitudě plastické deformace ukazuje velice dobrou korelaci se zákonem únavové životnosti. • Byla studována role oxidace v podmínkách cyklického zatěžování za vysokých teplot. Bylo zjištěno, že křehké praskání zoxidovaných hranic zrn hraje hlavní roli v počátečních stádiích nukleace trhlin. Později po iniciaci se dráha růstu trhliny mění preferenčně na transkrystalickou. Dráha šíření trhlin je velmi podobná dráze zjištěné při cyklování za pokojové teploty.
Low cycle fatigue behaviour and fatigue crack initiation in MAR-M247 at 700 °c
Šulák, Ivo ; Obrtlík, Karel ; Hrbáček, K.
The second generation nickel-based superalloy MAR-M247 offersa satisfying combination of fatigue and creep properties and oxidation and corrosion resistance that arerequired for application at elevated temperatures in hostile environments. The microstructure consists mainly oftheface centred cubic γ matrix and ordered γ ́ strengthening precipitates (L12crystal structure). The present work focuses on low cycle fatigue (LCF) behaviour of polycrystalline nickel-based superalloy MAR-M247 at high temperature. LCF tests were conducted on cylindrical specimens in symmetrical push-pull cycle under strain control with constant total strain amplitude and strain rate at 700 °C in ambientair. Cyclic stress-strain curvesand fatigue life curves in the representation ofplastic strain amplitude vs. stress amplitude andstress amplitude vs. the number of cycles to failure, respectively,were plotted and compared with data obtained on Inconel 713LC. Special attention waspaid to the investigation of crack initiation in MAR-M247 during low cycle fatigue. Crack initiation sites were studied by means of scanning electron microscopy (SEM) in dual beam microscope TESCAN LYRA 3 XMU FESEM equipped with focus ion beam (FIB). Specimens’ surface observations revealed the formation of pronounced surface relief indicating localisation of plastic deformation.Observations in transmission electron microscope (TEM)confirmed localisation of cyclic plastic deformation in persistent slip bands along {111} slip planes. Fractographic analysis revealed fatigue crack initiation sites. Fatigue crack propagation in stage I was typical of smooth facets up to 500 μm long.
LOW CYCLE FATIGUE BEHAVIOR AND FATIGUE CRACK INITIATION IN MAR-M247 AT 700 °C
Šulák, Ivo ; Obrtlík, Karel ; Hrbáček, K.
The second generation nickel-based superalloy MAR-M247 offers a satisfying combination of fatigue and creep properties and oxidation and corrosion resistance that are required for application at elevated temperatures in hostile environments. The microstructure consists mainly of the face centred cubic γ matrix and ordered γ´ strengthening precipitates (L12 crystal structure). The present work focuses on low cycle fatigue (LCF) behaviour of polycrystalline nickel-based superalloy MAR-M247 at high temperature. LCF tests were conducted on cylindrical specimens in a symmetrical push-pull cycle under strain control with constant total strain amplitude and strain rate at 700 °C in ambient air. Cyclic stress-strain curves and fatigue life curves in the representation of plastic strain amplitude vs. stress amplitude and stress amplitude vs. the number of cycles to failure, respectively, were plotted and compared with data obtained on Inconel 713LC. Special attention was paid to the investigation of crack initiation in MAR-M247 during low cycle fatigue. Crack initiation sites were studied by means of scanning electron microscopy (SEM) in dual beam microscope TESCAN LYRA 3 XMU FESEM equipped with focus ion beam (FIB). Specimens’ surface observations revealed the formation of pronounced surface relief indicating localisation of plastic deformation. Observations in transmission electron microscope (TEM) confirmed localisation of cyclic plastic deformation in persistent slip bands along {111} slip planes. Fractographic analysis revealed fatigue crack initiation sites. Fatigue crack propagation in stage I was typical of smooth facets up to 500 μm long.
Fatigue Crack Initiation in Nickel-Based Superalloy MAR-M247 at High Temperature
Šulák, Ivo ; Obrtlík, Karel
The present work is focused on the study of crack initiation during low cycle fatigue (LCF) loading of the second generation nickel-based superalloy MAR-M247 treated with hot isostatic pressing. LCF tests were conducted on cylindrical specimens in symmetrical push-pull cycle under strain control with constant total strain amplitude and strain rate at 800 °C in air atmosphere. Selected specimens were electrolytically polished to facilitate surface relief observations. Crack initiation sites were studied by means of scanning electron microscopy (SEM) in dual beam microscope TESCAN LYRA 3 XMU FESEM equipped with focus ion beam (FIB). The microstructure of the material is characterised by coarse dendritic grains with numerous carbides and small casting defects. The average grain size was 2.1 ± 0.3 mm. Fractographic analysis revealed the fatigue crack initiation sites and their relation to the casting defects and material microstructure. Casting defects, carbide inclusions and interdendritic areas were found to be important crack nucleation sites. Specimens’ surface observations revealed the formation of pronounced surface relief with short worm-like markings. Fatigue crack initiation in these places is documented and discussed.
Effect of alloying and thermal processing on mechanical properties of tial alloys
Chlupová, Alice ; Heczko, Milan ; Obrtlík, Karel ; Beran, Přemysl ; Kruml, Tomáš
Two -based TiAl alloys with 7 at.% of Nb, alloyed with 2 at.% Mo and 0.5 at.% C, were studied. A heat treatment leading to very fine lamellar microstructure was applied on both alloys. Microstructure after the heat treatment was described and mechanical properties including fatigue behaviour were measured. The as-received material alloyed with C possesses high strength and very limited ductility, especially at RT. After application of selected heat treatment it becomes even more brittle; therefore, this process could be considered as not appropriate for this alloy. On the contrary, in the case of Mo alloyed material, both strength and ductility are improved by the heat treatment at RT and usual working temperature (~750 °C). Presence of the phase is responsible for this effect. The selected heat treatment thus can be an alternative for this alloy to other thermomechanical treatments as high temperature forging.
IN-SITU HIGH TEMPERATURE LOW CYCLE FATIGUE STUDY OF SURFACE TOPOGRAPHY EVOLUTION IN NICKEL SUPERALLOY
Petrenec, M. ; Polák, Jaroslav ; Šamořil, T. ; Dluhoš, J. ; Obrtlík, Karel
In-situ Low Cycle Fatigue test (LCF) at temperature 635 degrees C have been performed in Scanning Electron Microscope (SEM) equipped with Electron Backscatter Diffraction analysis (EBSD) on a small dog-bone-shaped specimen of cast Inconel 713LC superalloy. The aim of the work was to study early stage fatigue damage at high temperature by the observations of the characteristic surface relief evolution and crystallographic characterization changes by EBSD. The detail of slip bands shape was checked by FIB and AFM microscopes. The LCF test was conducted on GATAN stage with pre tilted position and constant stress amplitude of total cycle number of 20. The relief produced in the first cycle determines the other locations of the localized cyclic slip to the primary slip planes (111). The relief was modified in the next cycles but without forming additionally new slip traces in the primary system. Based on EBSD analysis before and after LCF, the orientation of two grains was changed which caused activation of second slip system. The damage mechanism evolution is closely connected with the cyclic strain localization to the persistent slip bands where the fatigue cracks were initiated.
Fatigue behaviour of AZ31 and AZ61 magnesium alloys after corrosion degradation
Horynová, Miroslava ; Vojtěch, Dalibor (referee) ; Obrtlík, Karel (referee) ; Podrábský, Tomáš (advisor)
Dissertation thesis is focused on evaluation of influence of exposure in 5% salt fog on fatigue behavior of AZ31 and AZ61 magnesium alloy fabricated by squeeze casting method. Microstructure and mechanical properties of experimental materials have been evaluated. The AZ61 alloy was solution heat treated after prior optimization of the heat treatment process based on microstructural characteristics and mechanical properties. Depths of corrosion damage, corrosion rate and mechanism of corrosion of all three experimental alloys have been evaluated. Influence of prior corrosion exposure for 480 and 1000 hours on fatigue behavior of experimental materials was evaluated. Obtained data were compared with data obtained using smooth test specimens. Fractographic analysis was carried out on both smooth and precorroded specimens. Furthermore, influence of aluminium on corrosion and fatigue behavior of tested alloys was defined.
Fatigue-creep interaction in Ni superalloys and TiAl alloys
Šmíd, Miroslav ; Věchet, Stanislav (referee) ; Kunz, Ludvík (referee) ; Obrtlík, Karel (advisor)
The present doctoral thesis is focused on the effect of dwells on the low cycle fatigue behaviour of advanced high temperature materials. 10 minutes strain holds are introduced into the cyclic straining of cast Ni-based superalloy IN792-5A and cast intermetallic alloy TiAl-7Nb which were chosen as experimental material. Fatigue experiments were conducted in strain control mode with constant total strain amplitude and strain rate. IN792-5A was subjected to continuous cyclic loading test as well as fatigue tests either with tensile peak strain holds or compressive peak strain holds at temperature 800 °C. TiAl-7Nb was experimentally examined by continuous cyclic loading tests and also by fatigue test with tensile peak strain hold times at temperature 750 °C. Cyclic hardening/softening curves, cyclic stress-strain curves, Manson-Coffin curves and Basquin curves were obtained. Stress relaxation data were measured during hold times. Mean stress evolution was observed and documented. Microstructure of both alloys was observed in as-received state and also after cyclic loading by means of SEM and TEM. Surface relief investigation revealed cyclic plastic strain localisation as well as fatigue crack initiation sites. Fatigue crack propagation was described using fracture surface and longitudinal gauge section observations. Dislocation structures developed in the course of fatigue tests were studied and documented.
Microstructure, it´s Stability and Fatigue Properties of Ultra-Fine Grained Copper Prepared by ECAP Method
Navrátilová, Lucie ; Konečná, Radomila (referee) ; Obrtlík, Karel (referee) ; Kunz, Ludvík (advisor)
This work deals with fatigue properties and stability of microstructure of ultrafine-grained (UFG) copper prepared by severe plastic deformation by means of equal channel angular pressing (ECAP) method. The effect of different fatigue loading regimes and thermal exposition on microstructural changes was investigated and the fatigue lifetime curves were experimentally determined. The research attention was focussed on localization of cyclic plastic deformation and fatigue crack initiation in UFG structure. Experimental results indicate that after stress-controlled fatigue loading (both symmetrical and asymmetrical) the microstructure remains ultrafine; no grain coarsening was observed. Contrary to this, strain-controlled fatigue loading results in formation of bimodal structure. Grain coarsening was observed also after thermal exposition at 250 °C for 30 minutes. Annealing at lower temperatures does not result in grain coarsening or development of bimodal structure. Fatigue loading results in development of surface relief in form of cyclic slip markings. Their density, distribution and shape differ for particular fatigue loading regimes. Differences in crack initiation mechanism in low- and high-cycle fatigue region were found. Nevertheless, the characteristic feature for all loading regimes was stability of UFG microstructure in the region of cyclic slip bands and fatigue cracks.

National Repository of Grey Literature : 44 records found   1 - 10nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.