National Repository of Grey Literature 111 records found  1 - 10nextend  jump to record: Search took 0.00 seconds. 
Evaluation of Fracture Mechanical Parameters for Bi-Piezo-Material Notch
Hrstka, Miroslav ; Materna, Aleš (referee) ; Náhlík, Luboš (referee) ; Profant, Tomáš (advisor)
Předkládaná dizertační práce se zabývá stanovením hlavních členů Williamsova asymptotického rozvoje popisujícího rovinné elektro-elastické pole v okolí piezoelektrických bi-materiálových vrubů a trhlin na rozhraní za použití rozšířeného Lechnického-Eshelbyho-Strohova formalismu v návaznosti na čistě anizotropní pružnost. Je ukázáno, že rozšířený Lechnického-Eshelbyho-Strohův formalismus představuje spolu s moderními programovacími koncepty v jazyku Python efektivní a také praktický nástroj pro lomovou analýzu piezoelektrických bi-materiálů. Teoretická část práce popisuje aspekty anizotropní pružnosti a její návaznost na piezoelektrické materiály. Základní rovnice zaměřené na speciální typy monoklinických materiálů, které umožňují oddělení rovinného a anti-rovinného problému, jsou vyjádřeny pomocí komplexních potenciálů. V praktické části práce je sestaven problém vlastního hodnot pro bi-materiálový vrub, na jehož základě jsou stanoveny exponenty singularity a pomocí dvoustavového -integrálu také zobecněné faktory intenzity napětí. Veškeré vztahy a numerické procedury jsou následně rozšířeny na problém piezoelektrických bi-materiálových vrubů a podrobně prozkoumány v uvedených příkladech. Zvláštní pozornost je věnována přechodu asymptotického řešení téměř zavřených vrubů a trhlin na rozhraní. Vliv směru polarizace na asymptotické řešení je také zkoumán. Přesnost stanovení zobecněných faktorů intenzity napětí je testována srovnáním asymptotického řešení a řešení získaného pomocí metody konečných prvků s velmi jemnou sítí konečných prvků. Na závěr je formalismus modifikován pro nepiezoelektrické materiály.
Description of Crack Propagation in the Fields of Strongly Non-Homogeneous and Residual Stresses
Štegnerová, Kateřina ; Materna, Aleš (referee) ; Malíková, Lucie (referee) ; Náhlík, Luboš (advisor)
This Ph.D. thesis was written under the supervision of Assoc. Prof. Luboš Náhlík, Ph.D. and Assoc. Prof. Pavel Hutař, Ph.D. Thesis is focused mainly on application of generalized linear elastic fracture mechanics, which allows description of crack behaviour propagating from general singular stress concentrators, such as material interfaces or sharp V-notches, and verification of validity of used fracture criteria. The obtained results were used in the next part of the thesis, which deals with the issue of crack propagating in ceramic composites, where the stress distribution field is strongly influenced by the existence of material interface and presence of residual stresses, that arise during manufacturing process of composite.
Short fatigue crack propagation description
Trávníček, Lukáš ; Náhlík, Luboš (referee) ; Hutař, Pavel (advisor)
The presented master’s thesis deals with description of short fatigue cracks and can be divided to the several parts. In the first part, theoretical background of fatigue of materials and fracture mechanics parameters which can describe fatigue cracks is presented. Following part describes how to determine fracture mechanics parameters by finite elements method. Due to the shape of propagated fatigue crack, numerical model was established as a three-dimensional. Results obtained based on this model, was compared with literature with very good agreement. Than real shape of propagated short crack was used for description of the experimental data. It was shown, that plastic part of J-integral is suitable parameter for description of the short cracks.
Detecting plasticity in al thin films by means of bulge test
Holzer, Jakub ; Pikálek, Tomáš ; Buchta, Zdeněk ; Lazar, Josef ; Tinoco, H.A. ; Chlupová, Alice ; Náhlík, Luboš ; Sobota, Jaroslav ; Fořt, Tomáš ; Kruml, Tomáš
The Bulge test proved to be a useful tool for measuring elastic properties of thin films and\nfree standing membranes, particularly Young’s modulus and residual stress. The basic principle\nof bulge test is application of differential pressure on one side of the a membrane, measurement of\nthe shape of bulged surface as a function of pressure, in this case via laser interferometer, and\nevaluation of a pressure-deflection relationship. In this study, bilayer membrane consisting of a\nsilicon nitride supporting layer and an aluminium layer deposited by means of magnetron\nsputtering is subjected to the bulge test. The results clearly show signs of a non-linear behavior\nthat is caused by plastic deformation in the aluminium layer. Finite element analysis is being\ndeveloped to describe this behavior because analytical model using deflection of central point and\npressure relation falls apart in case of non-linearity.
Pressure pipe damage: Numerical estimation of point load effect
Zouhar, Michal ; Hutař, Pavel ; Ševčík, Martin ; Náhlík, Luboš
The most relevant loading conditions for real polymer pipe systems are not only internal pressure, but also loading caused by sand embedding including bending or different kinds of point loads. It has been shown that service lifetime of buried pipes can be reduced especially due to stress concentration caused by external point loads. If the pipe is loaded locally the stress is concentrated here and a crack can initiate at this position or the existing crack can be affected by corresponding stress redistribution. In the paper the effect of the hard indenter, Poisson's ratio, hoop stress level and pipe wall thickness on the crack shape was estimated using numerical simulations of the creep crack propagation based on finite element method. Relation between crack length and crack width was found and expressed by simple relationship. A deeper understanding of the point load effect in order to prevent unexpected failure of the pipelines is of paramount importance for pipeline design.
Lifetime Assessment of Particulate Ceramic Composite with Residual Stresses
Náhlík, Luboš ; Majer, Zdeněk ; Štegnerová, Kateřina ; Hutař, Pavel
A micro-crack propagation in particulate ceramic based composite was studied using finite element method (FEM). Subcritical crack growth (SCG) was numerically simulated under complex load conditions (mechanical loading and loading by internal residual stresses). The effect of residual stresses on the crack propagation was studied. Two-dimensional computational model of particulate ceramic composite with material properties corresponding to low temperature co-fired ceramics (LTCC) was developed. The results indicate that the presence of residual stresses significantly reduces values of stress intensity factor in the vicinity of composite surface and the direction of residual stresses around the particles contributes to the micro-crack deflection from the particles. The time to failure of the composite under mechanical loading was determined. Results obtained contribute to a better understanding of the role of residual stresses during micro-crack propagation in ceramic particulate composites.
Effect of residual stresses on the fatigue lifetime of railway axle
Hutař, Pavel ; Pokorný, Pavel ; Poduška, Jan ; Fajkoš, R. ; Náhlík, Luboš
The operation of railway axles should fulfill at least two main demands: safety and low operation costs. A significant part of operation costs is given by the length of regular inspection intervals which should reveal potential fatigue cracks in railway axle. The detection of cracks is of a probabilistic nature, therefore their detection is not ensured in all cases. For the safe operation of trains, an existence of potential initial crack should be considered on the axle surface and residual fatigue lifetime should be conservatively determined for this case. Reliable procedure of residual fatigue lifetime estimation should take into account real axle geometry, material characteristics and loading of the railway axle. This paper shows methodology for determination of residual fatigue lifetime (RFL) based on the fracture mechanics approach, taking into account real spectrum of the loading cycles, existence of press-fitted wheels and surface residual stresses given by the thermo-mechanical surface treatment of the railway axle. It is demonstrated that the effect of the residual stresses is significant and should not be neglected in the numerical estimation of residual fatigue lifetime of the axle.
3D Model of Crack Propagation in Particulate Ceramic Composite Containing Residual Stresses
Štegnerová, Kateřina ; Majer, Zdeněk ; Hutař, Pavel ; Náhlík, Luboš
A crack propagation and fracture behaviour of particulate ceramic composite were investigated. Influence of 3D shape of particles on the crack propagation was studied together with influence of the presence of residual stresses, which are developed inside the composite during manufacturing process. Finite element (FE) method was used for numerical simulation of propagating crack in the composite. Basic numerical models of low-temperature co-fired ceramics (LTCC) with alumina particles homogenously dispersed in the glass matrix were developed. Volume fraction of alumina phase was 20vol.%, which is typical amount for LTCC. The results show that existence of residual stresses retards the crack propagating under conditions of sub-critical crack growth (SCG). Presented results contribute to a better understanding of the role of residual stresses in particulate ceramic composites.
Influence of Extension of Load Spectrum on Estimation of Residual\nFatigue Lifetime of Railway Axle
Pokorný, Pavel ; Hutař, Pavel ; Náhlík, Luboš
Railway axles are subjected to cyclic amplitude loading which can lead to fatigue failure.\nFor safe operation of railway axles a damage tolerance approach taking into account a possible\ndefect in railway axle is often required. Because of different operation regimes of trains (fast/slow\nride, ride on straight track, on curved track, over switches etc.) the load amplitude of axle is not\nconstant. The variability of load is defined by a load spectrum, which is determined experimentally\nby measuring of load in service conditions. Even though the load spectrum is measured on several\nhundreds or thousands of operation kilometres, the railway axles are in operation much longer time\n(often tens of years). Therefore, some load amplitudes higher than ones measured in the test can\noccur during a long-term axle service. The contribution presented deals with the effect of extension\nof load spectrum by rare high load amplitudes, which can occur during long-term operation, on\nresidual fatigue lifetime of railway axles.
Interferometrical system for bulge test thin film characterization
Pikálek, Tomáš ; Holzer, Jakub ; Tinoco, H.A. ; Buchta, Zdeněk ; Lazar, Josef ; Chlupová, Alice ; Náhlík, Luboš ; Sobota, Jaroslav ; Fořt, Tomáš ; Kruml, Tomáš
Behavior of thin film materials undergoing stress and deformation differs from bulk materials. A common method for the mechanical characterization of thin films is nanoindentation based on indenting a small tip into the material. A different approach is a bulge test technique. In this method, a differential pressure is applied on a free-standing membrane and the mechanical properties (Young’s modulus and residual stress) are calculated from the shape of the bulged membrane. In our experiments, we developed an interferometrical system for the membrane shape measurement during the bulge test.

National Repository of Grey Literature : 111 records found   1 - 10nextend  jump to record:
See also: similar author names
2 Náhlík, L.
Interested in being notified about new results for this query?
Subscribe to the RSS feed.